
i

B. Comp. Dissertation

Real Time Path Tracing on GPU

By

Lin Daqi

Department of Computer Science

School of Computing

National University of Singapore

2016/2017

Project No: H113540

Advisor: Dr. Kok-Lim LOW

Deliverables:

Report: 1 Volume

ii

Abstract

With the rapid development of general purposed computing power on graphics hardware,
path tracing has been an increasingly popular topic for research for its photorealistic effect
based on straightforward concept, wide application in film and gaming industry and huge
potential for adaptation in real-time rendering in the future. However, most of today’s
mainstream path tracing software only supports off-line image synthesis without the
capability of real-time interaction and manipulation. To demonstrate the potential of real-
time rendering, I will introduce a light-weighted, highly efficient path tracer built with
CUDA architecture which encompasses almost all essential functionality of mainstream
path tracers, while allowing real-time user interaction with camera and scene geometry. In
addition, I will introduce some existing and new algorithms used in my path tracer which
significantly improves tracing speed and convergence rate in current GPGPU.

Subject Descriptors:

I.3.5 Computational Geometry and Object Modeling

I.3.7 Three-Dimensional Graphics and Realism

Keywords:

Real-time Path tracing, GPGPU, spatial acceleration structure, Monte Carlo
algorithm, BSDF, GPU SAH kd-tree construction

Implementation Software and Hardware:

CUDA 8.0, Visual Studio 2015, Blender, NVIDIA GeForce GTX 960M

iii

Acknowledgment

Highest appreciation for my supervisor, Dr. Kok-Lim LOW’s invaluable guidance.

Table of contents

Title i
Abstract ii
Acknowledgement iii

1 Introduction 1
 1.1 Background Information 1
 1.2 Project Objectives 2
 1.3 Layout of Thesis 2

2 Overview of Software Workflow 4

3 Spatial Acceleration Structure 7
 3.1 Choice of SAS 7
 3.2 Surface Area Heuristics 7
 3.3 Triangle Clipping in Kd-tree Construction 8
 3.4 Kd-tree Traversal 10
 3.5 SAH-based BVH 12
 3.6 Automatic BVH Refitting 13

4 Sampling Algorithms 14
 4.1 The Rendering Equation 14
 4.2 Stratified Sampling vs. Anti-aliasing Filters 15
 4.3 BSDF and Importance Sampling 16
 4.4 Next Event Estimation 17
 4.5 Fresnel Switch and The Russian Roulette 19
 4.6 Multiple Importance Sampling 21
 4.7 Bi-directional Path Tracing 23
 4.8 Metropolis Light Transport 25

5 Rendering Effects 30
 5.1 Surface-to-surface Reflection/Refraction 30
 5.2 Volume Rendering 31
 5.3 Subsurface Scattering 34
 5.4 Environment Map and Material Texture 36

6 SIMD Optimization 39
 6.1 Data Structure Rearrangement 39
 6.2 Thread Divergence Reduction 41
 6.3 Thread Compaction 42
 6.4 A More Efficient Ray-Triangle Intersection Algorithm 44
 6.5 GPU SAH Kd-Tree Construction 45

7 Benchmarking 50

8 Conclusion 54

 8.1 Summary 54
 8.2 Limitations & Recommendations for Further Work 55

Bibliography iv
Appendix vi

1

Chapter 1 Introduction

1.1 Background Information

Polygon rasterization method has been the de-facto standard of real-time graphic

generation technique of video gaming in past few decades, where ray tracing related

methods are still mainly used in off-line rendering of animation films and industrial designs.

However, recent years have witnessed a rapid growth in the capability of real-time ray

tracing with the advent of General Purpose GPU (GPGPU) and associated programming

interfaces like CUDA and OpenCL. Nowadays, it is possible to ray-trace complex scene

without global illumination in real-time on high-end GPUs. Because of its theoretical

straightforwardness of dealing with complex optical effects and the huge potential of

performance growth thanks to the performance scalability of GPU which responds directly

to Moore’s law without the power wall faced by CPU, ray tracing related methods have

been considered as the standard graphic rendering technique of the future.

However, to achieve photorealistic effects which, in rasterization based graphics, are

implemented by heavy use of textures, a ray tracing model must include global illumination

beyond the simplified light paths defined in Whitted ray tracing. Some ancillary methods

like radiosity and distribution ray tracing have been added into the original Whitted

framework to enhance the lighting effect, yet each of them targets at a specific subset of

the general global illumination and the combination of them is not exhaustive of all

possible light paths. Path tracing, which samples all possible light paths using Monte Carlo

methods and the rendering equation has come to the rescue. Fundamentally expanding the

scope of traditional ray tracing, path tracing can naturally generate authentic global

illumination effect within its theoretical simplicity. Yet, it requires thousands of samples

per pixel to reduce the noise on picture below human perception and is therefore used

mostly in offline rendering tasks like film production. Interactive refinement method which

averages the result among consecutive frames (each frame takes an extra sample for every

pixel and is accumulated to the result of last frame if the camera is still) has been adopted

in some real-time path tracing demos. However, most of these demo programs are hardly

https://en.wikipedia.org/wiki/Rendering_equation

2

optimized and only contains a very limited subset of rendering effects, which gives reason

to the implementation of a versatile, robust, and highly efficient real-time path tracer.

1.2 Objectives of Project

The main objective of this project is to explore the capability and performance of

combination of the power of current GPGPU with existing and new path tracing algorithms

in the task of real-time path tracing. To achieve this, a variety of different factors that

determines the efficiency of path tracing are studied, amongst which spatial acceleration

structures, sampling algorithms, and single-instruction-multiple-data (SIMD) optimization

are most important. Since the variable (lighting configuration, scene geometry and material)

and measure (frame rate, convergence rate) of path tracing performance are both multi-

dimensional, optimization concepts are provided in a case-by-case analysis. A standalone

program is written to demonstrate these concepts. To guarantee that the concepts are

applicable to general and complex cases, a considerably large subset of all functionalities

found in state-of-art path tracers is integrated into the program which includes PBR

(physically-based rendering) material and participating media. Besides, bi-directional path

tracing and Metropolis light transport are also studied to deal with cases containing difficult

lighting configuration and to improve the rendering quality under same time constraints.

1.3 Layout of Thesis

The main content of the thesis will be divided into 6 parts as Chapter 2 – Chapter 7. In

Chapter 2, we will have an overview of the workflow of our path tracer, followed by the

spatial acceleration structures including SAH-based Kd-Tree and BVH as the first studied

factor of optimization in Chapter 3. In Chapter 4, the rendering equation will be reviewed

with normal Monte Carlo sampling algorithm, after which advanced sampling techniques

- multiple importance sampling, bi-directional path tracing and Metropolis light transport

based on Markov Chain Monte Carlo method will be studied in response to difficult

rendering cases and noise reduction. Before the discussion of SIMD optimization in

Chapter 6, several important shading models including surface-to-surface BSDF, ray-

marching volume rendering and a simplification of subsurface scattering will be introduced

due to their close relationship with sampling methods. In particular, I will propose a parallel

3

SAH-based Kd-Tree construction algorithm that is suitable for current GPGPU in Chapter

6. In Chapter 7, benchmark methods will be introduced which carry out the comparison

between my path tracer, NVIDIA’s Optix path tracing demo, and Cycles Renderer – a free

mainstream path tracer.

4

Chapter 2 Overview of Software Workflow

Figure 1 UML flowchart of our path tracer

5

The diagram above shows the simplified workflow of the proposed path tracer. Note that

modules for metropolis light transport and bi-directional path tracing are not included in

this diagram, which only describes the normal unidirectional path tracing. However, one

can easily modify the diagram to get the versions for metropolis light transport and bi-

directional path tracing, which shares most of the processes. Also, it only shows the case

when kd-tree is used as the spatial acceleration structure. In fact, BVH is also implemented

especially for user manipulation of scene geometry.

An obvious characteristic of the displayed architecture is that modules seem to be evenly

distributed on CPU and GPU. In fact, GPU consumes most of the living time of the program,

as CPU is only responsible for some preprocessing work like handling I/O, parsing,

invoking memory allocation, calling CUDA and OpenGL API and the coordination

between thread pool and GPU kernel. Despite its frequent involvement in the path tracing

task (it appears between every two recursion levels in a frame), CPU occupies only a

fractional of the time. Notwithstanding its conciseness, the diagram shows all 3

optimization factors in path tracing. Kd-tree, which is constructed on GPU in this project,

is highly optimized by the “short-stack” traversal method which will be introduced later.

Multiple importance sampling, as a generalization of single importance sampling, can be

used for rendering glossy surface under strong highlights to reduce the variance. Thread

compaction, a crucial method for increasing proportion of effective work and memory

bandwidth, representative of the SIMT optimization, is shown at the bottom of the diagram.

A thread pool is maintained to coordinate the work of thread compaction.

After initialization, the program spends all of the rest of the time in two loops, the outer of

which uses successive refinement algorithm to display image in real-time, and the inner of

which executes a path tracing recursion level for all threads in every iteration. Between

two inner iterations, thread compaction is used to maintain occupancy as mentioned before.

Between two outer iterations, any user interaction is processed by CPU. After updating

corresponding values in device memory, OpenGL API is called to swap frame buffers.

It is noticeable that the Thrust library is also an important component of our workflow.

Developed by NVIDIA, Thrust is a C++ library for CUDA providing all parallel computing

primitives like map, scatter, reduce, scan and thread compaction. As a high-level interface,

6

Thrust enables high performance parallel computing capability while dramatically reduces

the programming effort (NVIDIA, 2017). Rather than “reinventing the wheel”, we use

thrust for all parallel computing primitives required for GPU kd-tree construction and

thread compaction in our program due to the proven efficiency it provides and the

flexibility of its API.

Overall, the diagram shows a very macroscopic outline of the software structure, whose

detail will be introduced in the following chapters. In addition, some limitations and

recommended improvements will be addressed in the final chapter.

7

Chapter 3 Spatial Acceleration Structure

3.1 Choice of SAS

The naïve implementation of ray tracing related algorithms iterates through the set of all

primitives in the scene and checks ray-primitive intersection for each, which is very time-

consuming (linear to the number of primitives) and is a severe bottleneck in performance

when the number of primitives gets high. In reality, different spatial acceleration structures

(SAS) are applied to solve the problem. They generally improve the speed to logarithmic

time and therefore can make interactive ray tracing for complex or even dynamic scene.

Octree, BSP (binary space partitioning), BVH (bounding volume hierarchy) and kd-tree

are some representatives of the SAS. The SAS generally divide the scene or mesh into

recursive sub-spaces which often has a tree-like structure. Among them, octree and BSP

are the type of solution which chooses split position in a fixed routine. For example, a

typical octree always chooses the center of the space to divide it into 8 sub-spaces. Since

they are indiscriminate to the specific geometry that the scene has, they generally exhibit

lower efficiency than BVH or kd-tree. BVH or kd-tree, on the other hand, uses some

heuristics to determine the partition position based on the specific scene geometry. In terms

of the efficiency of BVH and kd-tree, Vinkler et al. (2014) has shown that kd-tree has

higher performance for complex scenes than BVH while BVH defeats kd-tree for simple

to moderately complex scenes. Considering this, both structures are implemented for the

freedom of choice with respect to different kinds of scenes. In addition, BVH is necessary

for real-time ray tracing against dynamic scene geometry with complex moving meshes as

it maintains the interior hierarchy of the mesh and only updates exterior hierarchy which

is usually much simpler to do.

3.2 Surface Area Heuristics

The construction of kd-tree and BVH depends on choosing one dimension and the split

position in that dimension in every iteration. A naïve solution is to cycle through the 3 axes

and choose the space median every time, giving no better performance than octree. A

popular mechanism is Surface Area Heuristics (SAH) (Wald & Havran, 2006), which is

based on the greedy algorithm to find a local optimum based on the surface areas of the

8

two child nodes in every step. Instead of finding the global minimum cost which is

practically infeasible as number of possible trees grows exponentially with scene

complexity, SAH assumes all the primitives in child nodes of a particular step are in leaves,

giving the formula of the expected cost of a particular split:

𝐶𝐶𝑣𝑣(𝑝𝑝) = 𝐾𝐾𝑇𝑇 + 𝐾𝐾𝐼𝐼 �
𝑆𝑆𝑆𝑆(𝑉𝑉𝐿𝐿)
𝑆𝑆𝑆𝑆(𝑉𝑉)

|𝑇𝑇𝐿𝐿| +
𝑆𝑆𝑆𝑆(𝑉𝑉𝑅𝑅)
𝑆𝑆𝑆𝑆(𝑉𝑉)

|𝑇𝑇𝑅𝑅| �,

where 𝑆𝑆𝑆𝑆(𝑉𝑉𝑥𝑥) is the surface area of volume x, 𝐾𝐾𝑇𝑇 ,𝐾𝐾𝐼𝐼 correspond to the cost of a traversal

step and an intersection step, and 𝑇𝑇𝐿𝐿 ,𝑇𝑇𝑅𝑅 are number of primitives in left and right child

node. According to probability theory, 𝑆𝑆𝑆𝑆(𝑉𝑉𝐿𝐿)
𝑆𝑆𝑆𝑆(𝑉𝑉) gives the chance of uniformly distributed

rays hitting the left node based on the reasonable assumption that the distribution of rays

tends to not follow any certain pattern with the number of ray bounces increasing and

geometry of the scene varies. On the other hand, although treating both nodes as leaves

overestimates the real cost, the strategy works well in practice (Wald & Havran, 2006).

Another advantage of SAH is determination of when to stop splitting is easy, as one can

compare the cost of splitting and not splitting directly from the above formula.

Despite its high performance in traversal, the construction of the SAH-based tree is not a

trivial task and can cause severe initialization overhead for complex scene. We will use the

construction of SAH-based kd-tree as an example in the following sections of the chapter.

Wald & Havran introduced an O(N log N) SAH-based kd-tree construction algorithm

which beats the O(N2) or O(N log2 N) time of tradition algorithms. However, the

construction time can still be largely compressed with the computing power of today’s

GPGPU. Since the GPU construction only parallelizes the algorithm without changing its

key ideas, this topic will be discussed in Chapter 6 – SIMT optimization. In this chapter,

we will focus on issues of the performance of SAS in path tracing.

3.3 Triangle Clipping in Kd-Tree Construction

An important issue in kd-tree construction is the necessity to clip triangles which span

across the splitting plane in each level for accelerating intersection. In their 2006’s paper,

Wald & Havran suggested that on average, for a kd-node with N triangles, there are O(√𝑁𝑁)

triangles spanning across a splitting plane. Normally, we check whether the ends on current

9

chosen splitting axis of the triangle’s bounding box are in distinct sides of the splitting

plane to determine whether to add it in both of the child nodes. However, it may be the

case that the triangle does not overlap one of the child node, even though in one dimension

it does. Such error will be accumulated to a situation that the whole triangle lies outside of

its node’s bounding box. With the increase of kd-tree level, √𝑁𝑁
𝑁𝑁

 will be increasingly close

to 1, which means at leaf level, one would expect many false positives to occur in

intersection test, unnecessarily increasing the time for intersection. In addition, adding

spanning triangles to both sides unnecessarily increases the workload of construction as

one has to test the vertices against the boundary of the bounding box in current kd-tree

level to avoid choosing a splitting plane outside the bounding box.

Since it is convincing from the analysis above that clipping triangle does has an obvious

boost on intersection performance, which is often a bottleneck for path tracing, we offer

some test cases to quantize the rate of performance improvement. After that, we will

explain how to clip the triangles, which is a relatively simple task without the need of

importing third-party libraries.

Model
Name

Suzzane Stanford Bunny Armadillo Happy Buddha

Sample
Image

Face
Count

500 69,451 345,944 1,087,716

FPS w/o
clipping

39.73 33.11 27.30 25.33

FPS w
clipping

42.63 36.12 28.25 26.56

Speedup 7.3% 9.1% 3.5% 4.9%

Table 1 Speedup of triangle clipping for different models

10

From the table, we can observe that clipping triangles results in a speedup from 3.5% to

9.1% for different mesh complexity, which is not very drastic but obvious enough to

confirm the effect of triangle clipping.

We will now illustrate how to clip arbitrary triangle against box with an example where a

triangle is clipped to a pentagon. In Figure 2 below, we determine the intersection between

any pair of vertices that lies in different sides of each of the 6 faces of the cuboid. Then, in

the plane spanned by each of the 6 faces, we calculate the intersections the line extended

by the two intersection points (if there is two), which may be zero, one or two in number.

Any intersection will become a vertex of the clipped polygon. If the end vertex itself lies

inside or on the border of the box’s face, it also become a vertex of the clipped polygon.

Notice that the process is trivially parallelizable for the 6 faces, except for the memory

write, i.e. expanding current bounding box to contain the new vertex. If the construction is

running on GPU, parallelizing on 6 faces can decrease considerable amount of time for the

clipping stage in each level, which does not process too many triangles and is solely

occupying the GPU.

Figure 2 A triangle clipping example

3.4 Kd-tree Traversal
For the traversal of kd-tree, the standard CPU algorithm with stack which stores backside

nodes cannot be directly applied to GPU. First, the stack needs to be implemented in fixed

length array which guarantees coalesced memory access and reduces memory read and

write instead of using linked list or dynamic array implementation of stack. Second, size

of the stack item should be compressed as small as possible as complex scene with dozens

of kd-tree levels will require the stack to be allocated in local memory instead of the thread

11

registers with very limited capacity. Foley & Sugerman (2005) introduced two stackless

traversal algorithms called kd-restart and kd-backtrack. However, without the proper

priority information stored for traversal, these algorithms require modification of the

traversal path which brings extra time and space complexity: kd-restart directly goes into

the nearest leaf and restarts from the root with ray range propelled forward and kd-

backtrack stores extra node data to improve traversal restart efficiency as it can restart from

a node’s parent. Meanwhile, the worst case of kd-restart degenerates to linear.

A neat solution proposed by Santos et al. (2012) adopted a “short stack” method. Instead

of storing 12 bytes as in standard algorithms (4 bytes for node address, 4 bytes for near ray

distance (tnear), 4 bytes for far ray distance (tfar)), they discovered that tnear can be derived

in the traversal process and it only updates when the traversal finishes checking a leaf,

giving an “8-bytes” stack algorithm. The advantage of “8-bytes” stack is not only fewer

local memory required, but faster memory access thanks to the fact that an 8-byte load is

faster than a 12-byte loads in local memory in CUDA architecture.

By combing a SAH construction of kd-tree and a “short stack” traversal, my SAS has the

optimal performance comparing with other combinations. Below is the experiment data of

different combinations of construction and traversal methods on different scene (Figure 3).

Notice that these data are the result of some SIMD optimization applied to the data structure,

which I will discuss and compare the performance with non-optimized ones in Chapter 6.

Figure 3

12

3.5 SAH-based BVH
As mentioned before, BVH is a crucial component for real-time ray tracing against

dynamic scene geometry. Similar to kd-tree, the probabilistic analysis applies to the

decision of splitting plane in each tree level, which naturally leads to the fact that greedy

choice of local optimum gives the best available algorithm for optimizing traversal cost.

The only difference between kd-tree and BVH in terms of surface area heuristic is – BVH

is a hierarchy of objects and kd-tree is a hierarchy of subspaces. Therefore, refitting

bounding box is necessary when dividing the node into child nodes, which turns out to be

a time-consuming bottleneck in construction.

Unlike kd-tree construction which uses a dynamic array or vector to store all triangle events,

BVH construction needs to maintain a binary search tree for each dimension. The shrinking

side of the refitting process requires us to search and delete the events that are recently

switched to the expanding side and add them to the BST of that side. Initialization of the

BSTs costs O (N log N). Each check of splitting position costs O(log N) and the whole

process of best plane determination costs O (N log N), leading to a O (N log2 N) total time

complexity. Even worse, maintaining binary search tree for three dimensions implies a big

constant of 3. For this reason, the construction of SAH-based BVH often causes serious

overhead latency in complex cases. Fortunately, a simplification method which equally

divides the space into a small number of buckets was proposed by Pharr & Humphreys

(2011) in their famous Physically Based Rendering book. Partitions are then only

considered at bucket boundaries, which gives much more efficient construction while

remaining as effective in traversal as the original method. It is easy to figure out that the

whole construction only requires O(N log N) time since bucket number is a constant.

Meanwhile, a binned partition implies easier and more efficient parallelization on GPU.

Due to time limit, a GPU construction for BVH is not implemented, as there exist well

known parallel binned BVH construction methods.

The traversal of BVH is easier to implement than kd-tree but less efficient in performance.

Since we cannot guarantee any deterministic spatial order of BVH nodes as they may

overlap each other in any form, we cannot terminate traversal after we find a hit in leaf.

Although the child nodes of a BVH node are also stored in a “front-back” order. It only

13

indicates the spatial order of the centroid of two bounding boxes as in construction the

decision of affiliation of triangle is based on the side of its centroid. It is entirely possible

that the “back” BVH node contains a nearer hit than the “front” node. Nevertheless, such

probability is not high. In most cases, the “back” BVH node will not have any intersection

in the trimmed range after intersection is done for the “front” BVH node, after which it will

be popped from stack. If then the stack is checked to be empty, the function returns the

nearest intersection if there is any.

3.6 Automatic BVH Refitting
A simple solution of tracing dynamic scene geometry is to recursively refit the local BVH

whenever intended object moves beyond its parent’s bounding box. If tree levels outside

the intended object is much less than tree levels inside or movements of the object is

spatially limited, such method has a very low time cost. Attention must be paid to the fact

that shrinking refitting is also necessary when object moves towards the original position,

for which we can store a record of the moving direction of current frame as bitmask of 3

axes. If the bounding box of moving object in last frame borders its parent or ancestor with

respect to any of the current dimension of moving read from the bitmask, we perform a

shrinking refit. Also, for every movable object, a translation vector is stored to be used as

an offset in triangle intersection. However, when assumption of less exterior tree level does

not hold or there is violent movement of objects, we need to consider alternative methods

other than the purely refitting. A combination of splitting, merging and rotation operations

can be performed on tree structure (Kopta et al., 2012), which massively increases the

rendering speed for complex animated scenes as it avoids structural degeneration in naïve

refitting.

However, such method also has its limitation. When most of the objects in the scene are

animated (e.g. particle system), update of BVH is serialized due to necessary atomic

operations for many threads changing the boundaries of the same bounding box. In this

situation, it is better to rebuild the BVH rather than modify it.

14

Chapter 4 Sampling Algorithm

A key feature of path tracing that differentiates it with normal ray tracing is that it is a

stochastic process (provided that the random numbers are real) instead of a deterministic

process. Normal path tracing depends on Monte Carlo algorithm which gradually

converges the result to the ground truth as the number of samples increases. Theoretically,

one can uniformly sample all paths to converge to the correct result. However, given

limited hardware resource and time requirement, we need to adapt the brute Monte Carlo

algorithm by various strategies for different cases. The following sections will introduce

the rendering equation we need to solve in path tracing and some most popular sampling

methods.

4.1 The Rendering Equation
The rendering equation introduced by Kajiya (1986) defines the radiance seen from a point

𝒙𝒙 in the reflection direction 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟, i.e. view vector in ray tracing’s grammar as a result of

reversibility of light path:

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟�𝒙𝒙,𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟� = 𝐿𝐿𝑒𝑒�𝒙𝒙,𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟� + �𝑓𝑓(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖 →
Ω

𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜)𝐿𝐿𝑖𝑖𝑖𝑖(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔𝑖𝑖𝑖𝑖 ,

which is the emittance of the point itself plus the reflectance caused by all incident radiance

summed from the surrounding hemisphere. This is a physically correct model of global

illumination considering only surface to surface reflection. In computer graphics, this is

usually mapped into a recursion where the integral is decomposed into randomly picked

samples. For path tracing, all possible light paths from the set of light rays within a pixel

are sampled individually from random positions within the pixel whose results are then

averaged. Upon hitting a surface, only one secondary ray is shot for each sample. It

intuitionally follows that the secondary ray must be generated with some probability

mechanisms, which is defined by BSDF (bi-directional scattering distribution function,

union of BRDF (reflectance) and BTDF (transmission)) 𝜌𝜌(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖 → 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜) with respect to

the surface property. However, there are some problems. Given limited number of samples,

how do we choose a proper sampling strategy to maximize the image quality? Given a

http://dl.acm.org/author_page.cfm?id=81100653012&coll=DL&dl=ACM&trk=0&cfid=856764684&cftoken=87732239

15

specific BSDF, how to translate it into an algorithm that fits into the sampling strategy we

use?

4.2 Stratified Sampling vs. Anti-aliasing Filters
To generate samples within pixels, a naïve solution is uniform sampling. In CUDA device

code, the function curand_uniform(seed) can generate 1D uniform pseudorandom samples

from 0 to 1. However, the uniformly distributed samples tend to form clusters, producing

high noise level. A common way to overcome this is stratified sampling, which divides a

pixel into 𝐷𝐷×𝐷𝐷 grids and takes uniform samples of same number within each grid.

Theoretically, it reduces the error of estimation from 𝑂𝑂 � 1
√𝑛𝑛
� to 𝑂𝑂 �1

𝑛𝑛
�, where n is the

number of samples. A problem of stratified sampling is that it is not suitable for successive

refinement required in real-time rendering. When using successive refinement, usually one

sample is taken for every pixel in each frame. If we want to have minimum aliasing effect

in any given frame, the former samples must at least not follow any certain fixed pattern,

which is not possible for stratified sampling which must use at least 𝐷𝐷×𝐷𝐷 samples as a unit.

Therefore, we want to find a solution having both low noise level and successive refining

capability.

In the famous 99 lines of C++ implementation of path tracing SmallPT, Beason (2007)

applies a tent filter to the uniform random samples which shift more samples towards the

center of the pixel. In my test, this method produces same image quality given same

sampling number as stratified sampling does with the ability of successive refinement. In

fact, it approximates the sinc function, the ideal anti-aliasing filter (Figure 4). There are

actually other choices of approximation with higher quality such as bicubic filter and

Gaussian filter. However, these filters have much higher computation overheads while the

tent filter is a more practical choice in real-time rendering.

16

Figure 4. Comparison between sinc function and tent function

In practice, a combination of anti-aliasing filtering and stratified sampling is more desirable

in order to further decrease the noise level. In our implementation, every pixel is divided

into 4 subpixels and we generate rays by anti-aliasing filtered uniformed sampling and

average the returned color for all 4 subpixels. Counterintuitively, a frame executing such

process actually costs considerably less time than 4 frames without subpixel division in our

implementation. In Chapter 6, we will explain thread compaction, which is responsible for

this effect.

4.3 BSDF and Importance Sampling
Importance sampling is an effective method for solving rendering equation in high

convergence rate. Basically, importance sampling chooses samples by a designed

probability density function and divides the sample value by p.d.f. to return the result. If

the designed p.d.f. turns out to be proportional with the values, variance will be very low.

Since the sample value is determined by 𝑓𝑓(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖 → 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜)𝐿𝐿𝑖𝑖𝑖𝑖(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑖𝑖 , both

irradiance and BSDF decides the p.d.f. 𝑝𝑝(𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜) of the surface sample. Importance

sampling BSDF is a more trivial task than importance sampling the spatial distribution of

incoming radiance. As long as a BSDF formula (Lambertian, Cook-Torrance, Oren-Nayar,

etc.) and corresponding surface characteristics are provided, one can calculate
𝑓𝑓(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖→𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜)

𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖→𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜)
𝐿𝐿𝑖𝑖𝑖𝑖(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑖𝑖 as the result. However, distribution of 𝐿𝐿𝑖𝑖𝑖𝑖(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖) is

harder to calculate in general case. For indirect lighting on the surface point, it is impossible

to know the distribution of the incoming radiance, which is a chicken and egg paradox. For

direct lighting where 𝐿𝐿𝑖𝑖𝑖𝑖(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖) = 𝐿𝐿𝑒𝑒 , different methods can be applied to find the p.d.f.

With a simplified lighting model like point light or area light, the distribution of incoming

radiance is rather explicit. However, when image-based lighting is used (e.g. environmental

17

map or sky box), advanced techniques are required to perform importance sampling

efficiently. The following sections will all focus in the case of having explicit lighting

models since it is easier to exemplify how to utilize the p.d.f. of incoming radiance.

Discussion for image-based lighting will be continued in the next chapter. Since combing

the effect of two p.d.f. requires not only sampling on the surface point, but the lighting

model or lighting image as well. A technique called multiple importance sampling will be

introduced in Section 4.5.

4.4 Next Event Estimation
For direct lighting with explicit model, lighting computation can be directly done without

shooting ray to the lights, which is called next event estimation. Literally, it accounts for

the contribution of what may happen in the next iteration. For ideal diffuse surface, whose

BSDF is spatial uniform (usually expressed by Lambertian model), this task is very simple.

One only needs to sample a point in one of the lights. Take diffuse area light (emission of

a point is uniform in all directions) as an example, if the emission across the light emission

surface is the same, one only needs to uniformly sample the shape of the light. Otherwise,

usually there is an existing intensity distribution to use. After that, to convert the area

measure of p.d.f to solid angle measure, from formula 𝑝𝑝(𝜔𝜔)𝑑𝑑𝑑𝑑 = 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥) (Veach,

1997) we can derive 𝑝𝑝(𝜔𝜔) = 𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝑒𝑒(𝑥𝑥)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

||𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡−𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠||2

�𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡⋅𝐿𝐿�
, which can be used as the

p.d.f for incoming radiance. Given that Lambertian surface has a BSDF of 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜋𝜋

, the final

color can be expressed in the simple formula 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒
(𝑥𝑥)�𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⋅𝐿𝐿��𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡⋅𝐿𝐿�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝜋𝜋||𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡−𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠||2𝑝𝑝𝑒𝑒(𝑥𝑥) .

For diffuse area lights of simple geometric shape like triangle, uniform sampling can be

trivially done by using barycentric coordinates. Apart from light sampling, we also need to

shoot a shadow ray from the surface point being shaded to the sampled light point. Since

ray-triangle intersection test is a bottleneck in ray tracing for reasonably complex scenes,

this means we will almost halve the frame rate. However, the benefit of next event

estimation totally worth the costs it takes. Figure 5 is an example picture comparing the

convergence rate of diffuse reflection of two balls under highlight with and without next

event estimation, where 16 samples are taken for each pixel for both sampling methods.

Although the frame rate for rendering with next event estimation is only 60% of that

18

without next event estimation, the noise level of the former is dramatically lower than the

latter.

Figure 5. Comparison between same scene of high dynamic range with and without next event estimation

However, this example only shows the case where the shaded surface has a uniform BSDF.

For surfaces with general non-uniform BSDF like glossy surface in the Cook-Torrance

microfacet model, sampling the light is inefficient for variance reduction. An extreme case

is the perfect mirror reflection, whose BSDF is a delta function. Since only the mirrored

direction of the view vector w.r.t the surface normal contributes to the result, sampling

from a random point in the light model has zero probability to contribute. We would

naturally want to sample according to the BSDF. A general case is, a glossy surface whose

BSDF values concentrate in a moderately small range and the lighting model occupies

moderately large portion of the hemisphere around the surface being shaded. As a rescue

for general cases, multiple importance sampling will be introduced later. However, if we

want to have a balance between quality and speed, next event estimation can be mixed with

direct path tracing for different BSDF components. Especially for the case of surface

material with only diffuse and perfectly specular reflection, doing a next event estimation

by multiple importance sampling would be redundant. Instead, if the BSDF component in

current iteration is diffuse, we will set a flag to avoid counting in the contribution if we hit

a light in next iteration. Otherwise, such flag will have a false value, allowing the radiance

of the light hit by the main path to be accounted into. For determining which BSDF

19

component to sample, we will use a “Fresnel switch”, which will be introduced in the next

section.

4.5 Fresnel Switch and The Russian Roulette
Physically, there are only reflection and refraction when light as an electromagnetic wave

interacts with a surface, the ratio of which is determined by the media’s refractive indices

in two sides of the surface and the incidence angle of the light. The original formula is

actually different for s and p polarization component in the light ray. However, in computer

graphics, we normally treat the light as non-polarized. Under this assumption, Schlick’s

approximation (Schlick, 1994) can be used to calculate the Fresnel factor: 𝑅𝑅(𝜃𝜃) = 𝑅𝑅0 +

(1 − 𝑅𝑅0)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)5,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅0 = (𝑛𝑛1−𝑛𝑛2
𝑛𝑛1+𝑛𝑛2

)2. However, in the standard PBR workflow,

the refractive index is usually only provided for translucent objects. Although we can look

up for the refractive index of many kinds of material, for metals and semiconductors, the

refractive index n is a complex number, which complicates the calculation. Since the

refractive index of the metal indicates an absorption of the color without transmission,

specular color is used to approximate the reflection intensity in normal direction. In

practice, there is usually an albedo map and a metalness map for metallic objects. The

metalness of a point determines the ratio in interpolation between white color and albedo

color. In the case of metalness equal to 1, the albedo color will become the specular color

in reflection, as what we refer to as the color of metal actually suggests how different

wavelengths of light is absorbed rather than transmitted or scattered in the case for

dielectric material.

Briefly, if there is an explicit definition of index of refraction, we will use that for

𝑅𝑅0 calculation of the material. Otherwise, we interpolate the albedo color provided in

material map or scene description file with the white specular color meaning complete

reflection of light according to the metalness of the material, as defined in normal PBR

workflow. However, considering the fact that dielectric material also absorbs light to some

degree, the specular color can be attenuated by some factor less than 1 to provide a more

realistic appearance.

20

After 𝑅𝑅0 is calculated, we can calculate the Fresnel factor by substituting the dot product

of view vector and the surface normal into the Schlick’s formula. Notice that there is a

power of 5, which is better calculated by brute multiplication of 5 times than using the pow

function in the C++ or CUDA library for better performance. The Fresnel factor R indicates

the ratio of reflection. In path tracing, this indicates the probability of choosing the specular

BRDF to sample for the next direction. Complementarily, T = 1 – R expresses the

probability of transmission.

In our workflow, diffuse reflection is also modeled as a transmission, which will

immediately be scattered back by particles beneath the surface uniformly in all directions,

which is usually modeled by Lambertian BSDF. However, to be more physically realistic,

we can refer to Ashikhmin and Shirley’s model (2000) which models the surface as one

glossy layer above and one diffuse layer beneath with infinitesimal distance between. The

back scattering in realistic diffuse reflection happens at the diffuse layer as a Lambertian

process, after which the reflected ray is attenuated again by transmitted across the glossy

surface, implying less contribution of next ray in near tangent directions. For energy

conservation, Ashikhmin and Shirley also include a scaling constant 28
23

 in the formula.

Therefore, the complete BSDF is :

𝑓𝑓(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖 → 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜) = 28
23

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜋𝜋

(1 − 𝑅𝑅0)(1 − (1 − 𝑛𝑛⋅𝜔𝜔𝑖𝑖𝑖𝑖
2

)5)(1 − (1 − 𝑛𝑛⋅𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜
2

)5).

Russian roulette is used to choose the BSDF component given the Fresnel factor and other

related material attributes. If the generated normalized uniform random number is above

the Fresnel threshold R, next ray will be transmission or diffuse reflection. Again, the

“translucency” attribute of the material will be used as the threshold for determining

transmission or diffuse reflection, which is actually an approximation of general subsurface

scattering, which will be discussed in next chapter. The Fresnel switch guarantees we can

preview the statistically authentic result in real-time. However, the thread divergence

implies a severe time penalty in GPU. Suggestion will be given in the SIMT optimization

analysis in Chapter 6.

The Russian Roulette is also responsible for thread termination. Since any surface cannot

amplify the intensity of incoming light, the RGB value of the mask

21

(𝑓𝑓(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖→𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜)
𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖→𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜)

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑖𝑖) is always less than or equal to 1. The intensity of the mask (which

is the value of the largest component of RGB, or the value in HSV decomposition of color)

is then used as the threshold to terminate paths. To be statistically correct, the mask is

always divided by the threshold value after the Russian Roulette test, which is a very

intuitive process – if the reflectance of the surface is weak, early termination with value-

compensated masks is equivalent to multiple iterations of normal masks. Such termination

decision greatly speeds up rendering without increasing the variance.

For generating photorealistic result, it is possible to use the Russian Roulette solely to

determinate termination without setting a maximum depth. However, considering the

extreme case where the camera is inside an enclosed room and all surfaces are perfectly

specular and reflect all lights, there is still a need to set a maximum depth.

4.6 Multiple Importance Sampling
Returning to our question of next event estimation or direct lighting computation for

general surface BSDF, the technique called multiple importance sampling was introduced

by Eric Veach in his 1997’s PhD dissertation. Basically, it uses a simple strategy to provide

a highly efficient and low-variance estimate of a multi-factor integral mapped to a Monte

Carlo process where two or more sampling distributions are used, usually in different

sampling domains. Given an integral ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 with two available sampling

distributions 𝑝𝑝𝑓𝑓 and 𝑝𝑝𝑒𝑒 , a simple formula given to as the Monte Carlo estimator

1
𝑛𝑛𝑓𝑓
∑ 𝑓𝑓(𝑋𝑋𝑖𝑖)𝑔𝑔(𝑋𝑋𝑖𝑖)𝑤𝑤𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑝𝑝𝑓𝑓(𝑋𝑋𝑖𝑖)
𝑛𝑛𝑓𝑓
𝑖𝑖=1 + 1

𝑛𝑛𝑔𝑔
∑ 𝑓𝑓�𝑌𝑌𝑗𝑗�𝑔𝑔�𝑌𝑌𝑗𝑗�𝑤𝑤𝑔𝑔(𝑌𝑌𝑗𝑗)

𝑝𝑝𝑔𝑔�𝑌𝑌𝑗𝑗�
𝑛𝑛𝑔𝑔
𝑗𝑗=1 , where 𝑛𝑛𝑓𝑓 and 𝑛𝑛𝑔𝑔 are number of samples

taken for each distribution and 𝑤𝑤𝑓𝑓(𝑋𝑋𝑖𝑖) and 𝑤𝑤𝑔𝑔(𝑋𝑋𝑖𝑖) are specially chosen weighting

functions which must guarantee that the expected value of the estimation equals the integral

∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑. As expected, the weighting functions can be chosen from some heuristics

to minimize the variance.

Veach also offers two heuristic weighting functions: balance heuristic and power heuristic.

In a general form 𝑤𝑤𝑘𝑘(𝑥𝑥) = (𝑛𝑛𝑘𝑘𝑝𝑝𝑘𝑘(𝑥𝑥))𝛽𝛽

∑ (𝑛𝑛𝑖𝑖𝑝𝑝𝑖𝑖(𝑥𝑥))𝛽𝛽𝑖𝑖
 where k is any particular sampling method, balance

heuristic always takes 𝛽𝛽 = 1 while power heuristic gives the freedom to choose any

22

exponent 𝛽𝛽. Veach then uses numerical tests to determine that 𝛽𝛽 = 2 is a good value for

most cases.

In order to verify the practical result of multiple importance sampling and the effect of the

choice of weighting function, some test cases were performed and sample images of the

results are listed below.

Figure 6 Left: multiple important sampling Right: single importance (light) sampling

The first test case compares the result of multiple importance sampling (both from BSDF

and light) and single importance sampling (only from BSDF). In each frame, a path is

traced for each pixel. Although rendered only 10 frames, the MIS result clearly displays

the shape of the reflection of the strong area light on the rough mirror behind the boxes and

its further reflection on the alongside walls. In contrast, the non-MIS result generated by

100 frames still has a very noisy presentation of the reflected shape of the highlight. Note

that for reflection on the floor and ceiling, which has a low roughness, non-MIS in frame

100 still has a lower noise level than that of MIS in frame 10. Since most contribution to

the color comes from samples generated from BSDF, the strength of multiple importance

sampling diminishes, which is also the case when the BSDF is near uniform.

23

Figure 7 Left: balance heuristic Middle: power heuristic Right: ground truth

Another test case aims at comparing the effect of balance heuristic and power heuristic.

The images in Figure 7 above show the result of rendering the same Cornell box scene with

moderately rough back mirror in 10 frames for both methods. Without very carefully

inspecting the images, it is nearly impossible to observe any difference between two images.

However, noise level is indeed lower when using power heuristic. Intuitively, if one

carefully looks at some dark regions in the picture like the front face of the shorter box, an

observation that many noise points are brighter in the image generated by balance heuristic

(Since both cases use the same seed for random number generation, it is possible to

compare noise point at same pixel position). However, we also offer numerical analysis to

compare the percentage of difference between the two images and the ground truth

(rendered by metropolis light transport in 80000 frames). The result of calculating the

histogram correlation coefficient with the ground truth for each image shows that image

generated by power heuristic has a value of 0.7517, larger than the image generated by

balance heuristic which has a value of 0.7488. Although this is only a minor difference, it

proves that power heuristic indeed has lower variance.

4.7 Bi-directional Path Tracing
An important fact of the sampling methods we have discussed so far is that the variance

level depends on both geometry of the emissive surfaces or lights and the local geometry

of surrounding surfaces. For brute path tracing, the rate of hitting the background (out of

the scene) will be much larger than hitting the light if the summed area of lights is too small

or lights are almost locally occluded, which results in only a few of terminated rays would

carry the color of emission, causing large variance. For importance sampling or multiple

importance sampling, shadow rays must be shot to the light. Expected variance level can

24

only be guaranteed when the chance of misses is of the same order of magnitude as that of

chance of hits; otherwise, the variance level will degenerate to that of brute path tracing.

Thankfully, this problem can be solved by also shooting a ray from the light and “connect”

the end vertices of the eye path and light path to calculate the contribution, which is called

bi-directional path tracing (Lafortune & Willems, 1993).

The core problem in bi-directional path tracing is the “connect” process. Since the

contribution of incoming radiance is sampled as a point (end vertex of light path) in the

area domain, we must convert that to the solid angle domain to obtain the result. The

 ∫ 𝑓𝑓(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖 →Ω 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜)𝐿𝐿𝑖𝑖𝑖𝑖(𝒙𝒙,𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔𝑖𝑖𝑛𝑛 term in the rendering equation can be

converted to an equivalent ∫ 𝑓𝑓(𝒙𝒙,𝒙𝒙′′ → 𝒙𝒙,𝒙𝒙 →A 𝒙𝒙′)𝑉𝑉(𝒙𝒙 ⟷ 𝒙𝒙′)𝐺𝐺(𝒙𝒙 ⟷ 𝒙𝒙′)𝑑𝑑𝑑𝑑 in the

domain of all surface areas, where 𝑉𝑉(𝒙𝒙 ⟷ 𝒙𝒙′) is the visibility factor which equals to 1 if

the connection path is not occluded and 0 otherwise and 𝐺𝐺(𝒙𝒙 ⟷ 𝒙𝒙′) = |𝒏𝒏�⋅𝒙𝒙−𝒙𝒙′� ||𝒏𝒏′�⋅𝒙𝒙−𝒙𝒙′� |
||𝒙𝒙−𝒙𝒙′||𝟐𝟐

 is

the geometry term.

Importantly, we not only connect the terminated end points of light path and eye path, but

the intermediate path ends as well. However, since each connection involves a ray-triangle

intersection test, performance will be greatly affected - for path lengths of O(n), there will

be O(n2) intersection tests. In some situation like perfect mirror reflection, we can exclude

the contribution of light path since it has a zero probability as a way to save computation

time. It is worth mentioning that for all combinations with a specific path length, the

contribution of each should be divided by the total number of combinations to maintain

energy conservation. For any combined path length of n, there are n + 1 ways of

combination of eye path and light path if we want to include the contribution of all kinds

of combination. It is also possible to apply importance sampling here as a specific path

combination can be weighted by the p.d.f. in all path combinations of the same length.

However, that requires additional space to store the intermediate results and may not be

good for GPU performance. Next event estimation can also be applied here, so that direct

lighting component exists in all combined path length less than or equal to (maximum eye

path length + 1), for which the denominator of contribution should be incremented by 1 to

include this factor.

25

In order to test the effect of bi-directional path tracing, we simply inverted the light in the

original Cornell Box scene such that light faces the ceiling and the light can only bounce

to other surfaces via the small crevices on the rim of the light. The sample image in Figure

8 shows that both rendered in 100 frames, bi-directional path remarkably reduces the noise

level comparing to that when only using next event estimation, totally worth for the

reduction of frame rate to 50%.

Figure 8 Left: Bi-directional path tracing Right: Uni-directional (eye) path tracing

4.8 Metropolis Light Transport
Using multiple importance sampling and bi-directional path tracing, it is still difficult to

maintain low variance in integration estimation for solving problems like bright indirect

light, caustics caused by reflected light from caustics and light coming from long, narrow,

and tortuous corridors. The key problem of previous sampling methods is that they only

consider local importance (light or surface BSDF) rather than the importance of the whole

path. In terms of global importance sampling, the original Monte Carlo method is still a

brute force solution. To our rescue, there is a rendering algorithm called Metropolis Light

Transport (MLT) adapted from the Metropolis–Hastings sampling algorithm based on the

Markov Chain Monte Carlo (MCMC) method (Veach, 1997). It has the nice feature that

the probability of a path being sampled corresponds to its contribution in the global integral

of the radiance toward camera and such paths can be locally explored by designing some

mutation strategy. Basically, it proposes new perturbation or mutation to current path in

26

every iteration and accepts the proposal with a probability 𝑎𝑎(𝑥𝑥′|𝑥𝑥) = min (1,
𝑓𝑓�𝑥𝑥′�𝑇𝑇�𝑥𝑥 �𝑥𝑥′�
𝑓𝑓(𝑥𝑥)𝑇𝑇�𝑥𝑥′�𝑥𝑥 �),

where the 𝑓𝑓(𝑥𝑥′) and 𝑓𝑓(𝑥𝑥) are the radiance values and 𝑇𝑇(𝑥𝑥 |𝑥𝑥′) and 𝑇𝑇(𝑥𝑥′|𝑥𝑥) are tentative

transition functions which indicate the probability density of transforming from a state to

another state in the designed mutation strategy. In general cases, 𝑇𝑇(𝑥𝑥 |𝑥𝑥′) and 𝑇𝑇(𝑥𝑥′|𝑥𝑥) are

not equal. For example, given the specific task of sampling caustics, we can define a

mutation strategy that only moves the path vertices at the specular surface. As a return,

such mutation can have a transitional probability corresponding with local p.d.f. – if such

point 𝑝𝑝 ∈ 𝑥𝑥 in a specular surface contributes more highlight than another 𝑝𝑝′ ∈ 𝑥𝑥′ in the

same surface as its BSDF suggests, the probability of moving from 𝑥𝑥′ to 𝑥𝑥 is greater than

moving from 𝑥𝑥 to 𝑥𝑥′, giving 𝑇𝑇(𝑥𝑥′|𝑥𝑥) > 𝑇𝑇(𝑥𝑥 |𝑥𝑥′). However, different mutation strategies

need to be designed in different kinds of task in order to achieve the highest rendering

quality. For general kinds of task, we can ignore local p.d.f. in mutation while still

maintaining a good performance. A way of doing so is to store and mutate only the random

numbers for every samples generated in the path (selecting camera ray, choosing next ray

direction, picking points on area light, determining Russian roulette value, etc.), which will

function as “global-local” perturbations on current path, as suggested by Pharr &

Humphreys (2011).

Another issue for MLT is ergodicity (Veach, 1997). The MCMC process must traverse the

whole path space without getting stuck at some subspaces, which turns out to have a

solution of setting a probability for large (global) mutation. Each iteration will test a

random number against the threshold. If, for example, the random number is lower than

the threshold 0.25, it means on average there is 1 large mutation and 3 small (local)

mutations out of 4 mutations. The local mutations are sampled by an exponential

distribution (Veach, 1997), implying much larger chance of less movement from the

original place while allowing moderately large local mutations. The global mutations are

sampled uniformly across the [0,1] interval.

Still another problem of MLT is that in order to choose a probability density function p

corresponding to the radiance contribution of the path, which is a scalar, we must find a

way to map the 3D radiance value to 1D space to determine the acceptance probability. A

27

reasonable way of doing this is using the Y value in XYZ color space which reflects the

intensity perceived by human eye. A simple conversion formula is given as Y = 0.212671R

+ 0.715160G + 0.072169B. Note that no matter what mapping formula is chosen, the result

is still unbiased. Choosing a mapping closer to eye perception curve allows faster

convergence and better visual appearance in same number of iterations.

Nevertheless, another important issue of MLT is the start-up bias (Veach, 1997).

Considering the estimation function 𝑚𝑚𝑗𝑗 = 𝐸𝐸[1
𝑁𝑁
∑ 𝑤𝑤(𝑋𝑋𝑖𝑖)𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑝𝑝(𝑋𝑋𝑖𝑖)
𝑁𝑁
𝑖𝑖=1] , where f is the radiance, p

is the mapped intensity and w is the lens filter function. The Metropolis–Hastings algorithm

guarantees that the sampling probability 𝑝𝑝 = 𝑓𝑓
∫ 𝑓𝑓𝑓𝑓𝑓𝑓S

 in equilibrium, giving the minimal

variance. However, we have no way to sample in such 𝑝𝑝 before equilibrium is reached but

gradually converge to the correct p.d.f, even though we use 𝑓𝑓
∫ 𝑓𝑓𝑓𝑓𝑓𝑓S

 as the denominator which

is actually not the real p.d.f. for current sample. This causes incorrect color in first few

samples, known as start-up bias. Depending on the requirement, if the rendering task is not

time-restrictive or not aimed for dynamic scene, we can just discard the first few samples

until the result become reasonable. Using a smaller large mutation rate is also a remedy for

start-up bias. However, tradeoffs are that complex local paths become harder to detect and

while the global appearance converges quickly, local features like caustics and glossy

reflection emerge very slowly. In practice, if the scene contains mostly diffuse surfaces,

large mutation rate can be set larger. On the other hand, if the intricate optical effects are

the emphasis of rendering, large mutation rate should be set much smaller. In fact,

designing specific mutation strategies with customized transition functions may be better

than just using “global-local” mutations.

It turns out that MLT can be trivially mapped to GPU by running independent tasks in each

thread, as is implemented by this project. However, such method still has its defects. For

decent convergence rate, the number of threads is set to be equal to the number of screen

pixels (so that for the average case, every pixel can be shaded in every frame), which

implies high space complexity, due to stored random numbers (stored as float) in graphic

memory. If the screen width and height are W and H, maximum path length (or combined

path length if bi-directional path tracing is used) is k and about 10 samples need to be

28

generated for each path segment (as in our implementation), there will be 40k*W*H bytes

in total for storing the MLT data. With 1920*1080 resolution and a reasonable k = 30, there

will be 2.37G of data, exceeding size of the graphic memory for many low to mid end

graphic cards nowadays. To solve this issue, some data compression can be done and it is

also possible to let the threads collaborate in a more efficient way, which means running

less number of tasks while keeping same or lower variance. However, we will not study

this topic in this project due to the effectiveness of existing performance and existence of

other important issues.

Last but not least, the estimation of global radiance 𝑟̅𝑟 = ||∫ 𝑓𝑓𝑓𝑓𝑓𝑓S || (||x|| indicates a

measure of the magnitude of intensity of the RGB color) at the beginning will affect the

overall luminance of the final result. From the formula 𝑚𝑚𝑗𝑗 = 𝐸𝐸[1
𝑁𝑁
∑ 𝑤𝑤(𝑋𝑋𝑖𝑖)𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑝𝑝(𝑋𝑋𝑖𝑖)
𝑁𝑁
𝑖𝑖=1], 𝑝𝑝(𝑋𝑋𝑖𝑖) is

chosen to be ||𝑓𝑓(𝑋𝑋𝑖𝑖)||
𝑟̅𝑟

, yielding 𝑟̅𝑟𝑤𝑤(𝑋𝑋𝑖𝑖)𝑓𝑓(𝑋𝑋𝑖𝑖)
||𝑓𝑓(𝑋𝑋𝑖𝑖)||

 as the radiance contribution from one sample,

where 𝑟̅𝑟 functions as a scaling factor for all samples. As a result, in the case where the

rendered result is required to be physically authentic, more sample should be taken to

estimate the global radiance, although it causes a considerable overhead.

To illustrate the advantage of MLT, some sample image from tests are shown in Figure 9.

In both cases, bi-directional path tracing with multiple importance sampled direct lighting

is used; the first row shows the result in frame 1, 30, 100 for normal Monte Carlo (MC)

sampling whereas the second row shows the results at same frames for MLT. Reader will

notice difference of the ways of the two estimators accumulate color. While maintaining a

low noise level from the initial frame, MLT estimator exhibits start-up bias as shown by

the dim color of the part of the ceiling directly illuminated by the light. In frame 100, the

MLT estimator almost reaches the equilibrium as observed in comparison with the MC

estimator with respect to color of directly illuminated part of the ceiling. It is worth

mentioning that such level of variance is can only be achieved in frame number > 1000 by

MC estimator while the MLT estimator is only slightly slower than MC estimator, cause

of which mainly attributes to the atomic memory write as each thread runs an independent

MLT task which can write color to all pixels on the screen.

29

Figure 9 Upper: Monte Carlo Lower: Metropolis (Both use bi-directional path tracing)

30

Chapter 5 Rendering Effects

Before going to the discussion of SIMT optimization, we present this chapter to briefly

introduce the rendering effects supported by the path tracer, the importance of which comes

from the fact that it is the direct application of the sampling methods discussed before.

5.1 Surface-to-surface Reflection/Refraction

As a guarantee of its practical capability, our path tracer simulates the optical effects of all

kinds of surface-to-surface reflection or refraction, not including the cases like polarized

light or fluorescence which are rare in practice. For diffuse reflection, the Lambertian

model adjusted by Ashikhmin and Shirley formula is used (Section 4.5) while Cook-

Torrance microfacet model is responsible for specular or glossy reflection. Our path tracer

also supports anisotropic material standardized by Wald model (Ward, 1992), which only

modifies the Beckmann distribution factor in Cook-Torrance model (Cook & Torrance,

1982),

 𝐷𝐷𝑖𝑖𝑠𝑠𝑠𝑠 =
𝑒𝑒
−𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃
𝛼𝛼2

𝜋𝜋𝛼𝛼2𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃
 ; 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

𝑒𝑒
−𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃(𝑐𝑐𝑐𝑐𝑐𝑐

2𝜙𝜙
𝛼𝛼𝑥𝑥2

+𝑠𝑠𝑠𝑠𝑠𝑠
2𝜙𝜙

𝛼𝛼𝑦𝑦2
)

𝜋𝜋𝛼𝛼𝑥𝑥𝛼𝛼𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃
,

where 𝛼𝛼𝑥𝑥 and 𝛼𝛼𝑦𝑦 correspond to “roughness” of the material in x and y direction w.r.t.

tangent space. Taking azimuth angle 𝜙𝜙 as argument, it is easy to see that when 𝜙𝜙 = 0 𝑜𝑜𝑜𝑜 𝜋𝜋

the distribution is completely determined by 𝛼𝛼𝑥𝑥 and when 𝜙𝜙 = 𝜋𝜋
2

 𝑜𝑜𝑜𝑜 3𝜋𝜋
2

 the distribution is

totally decided by 𝛼𝛼𝑦𝑦.

For importance sampling the Wald BRDF, two uniform unit random variables 𝜉𝜉1 and 𝜉𝜉2

are generated and it is easy to solve the equations for azimuth angle 𝜙𝜙 and altitude angle

𝜃𝜃:

𝜙𝜙 = arctan �
𝑎𝑎𝑦𝑦
𝑎𝑎𝑥𝑥

tan(2𝜋𝜋𝜋𝜋1)� , 𝜃𝜃 = arctan

⎝

⎜
⎛
�

−𝑙𝑙𝑙𝑙𝑔𝑔𝜉𝜉2
𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙
𝛼𝛼𝑥𝑥2

+ 𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙
𝛼𝛼𝑦𝑦2 ⎠

⎟
⎞

31

Figure 10 Isotropic & anisotropic specular

For surface-to-surface refraction, the Cook-Torrance microfacet model can be modified by

recalculating the Jacobian matrix for the transform between half-vector H and outgoing

vector L (Walter, Marschner, Li, Torrance, 2007), yielding 𝑓𝑓𝑇𝑇 = (1−𝐹𝐹)𝐺𝐺𝐺𝐺𝐺𝐺 |𝑉𝑉⋅𝐻𝐻||𝐿𝐿⋅𝐻𝐻|
|𝑉𝑉⋅𝑁𝑁||𝐿𝐿⋅𝑁𝑁| , where

D is the microfacet distribution function (Beckmann in our implementation, G is the

shadowing term (a numerical approximation to Smith shadowing function in our

implementation, the roughness coefficient 𝛼𝛼 inside whom is substituted by 1/ (𝑐𝑐𝑐𝑐𝑐𝑐
2𝜙𝜙

𝛼𝛼𝑥𝑥2
+

𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙
𝛼𝛼𝑦𝑦2

) for anisotropic material) and J = 𝜂𝜂𝑜𝑜2|𝐿𝐿⋅𝐻𝐻|
(𝜂𝜂𝑖𝑖|𝑉𝑉⋅𝑁𝑁|+𝜂𝜂𝑜𝑜|𝐿𝐿⋅𝑁𝑁|)2

 , where 𝜂𝜂𝑖𝑖 , 𝜂𝜂𝑜𝑜 are the index of

refraction of the two media, is the absolute value of the Jacobian matrix. The half-vector

H in refraction indicates the normal of the sampled microfacet, which can be obtained by

calculating −(𝑉𝑉 + 𝜂𝜂𝑜𝑜𝐿𝐿)� if BSDF needs to be determined from arbitrary incoming and

outgoing radiance so as in the case of multiple importance sampling.

5.2 Volume Rendering

The rendering techniques so far are based on the assumption that spaces between surfaces

are vacuum, which is only an effective simplification in ordinary cases with clear air. For

phenomena like fog, smog, smoke, obvious scatter, absorption, and emission can happen

between surfaces, which affect the radiance towards viewer. In the presence of such

participating media, an integro-differential equation of transfer (Chandrasekhar, 1960)

shows the directional radiance gradient of a point in participating media to model the

change of radiance in space.

32

𝜕𝜕
𝜕𝜕𝜕𝜕
𝐿𝐿𝑜𝑜(𝑥𝑥,𝜔𝜔) = −𝜎𝜎𝑡𝑡(𝑥𝑥,𝜔𝜔)𝐿𝐿𝑖𝑖(𝑥𝑥,−𝜔𝜔) + 𝐿𝐿𝑣𝑣𝑣𝑣(𝑥𝑥,𝜔𝜔) + 𝜎𝜎𝑠𝑠(𝑥𝑥,𝜔𝜔)�𝑝𝑝(𝑥𝑥,−𝜔𝜔′ → 𝜔𝜔)𝐿𝐿𝑖𝑖(𝑥𝑥,𝜔𝜔′)𝑑𝑑𝜔𝜔′,

S

where 𝑥𝑥 is the point in space and 𝜔𝜔 is the direction in interest with 𝑡𝑡 being the measure of

displacement along the direction. 𝜎𝜎𝑡𝑡 is the attenuation coefficient accounting for both

absorption and out-scattering, while 𝜎𝜎𝑠𝑠 is the scattering coefficient controlling the

magnitude of in-scattering, which has the phase function 𝑝𝑝 to define the probability density

of in-scattering from each direction. 𝐿𝐿𝑣𝑣𝑣𝑣 and 𝐿𝐿𝑖𝑖 stand for media emission and incoming

radiance, respectively. For isotropic media, 𝑝𝑝 has a constant value of 1
4𝜋𝜋

, which is intuitive

as the integral of differential angles in the sphere gives 4𝜋𝜋. For general media, there is a

phase function developed by Henyey and Greenstein (1941) which provides a simple

asymmetry parameter 𝑔𝑔 ranging from -1 to 1 to control the “polarity” of the participating

media.

In practice, the integro-differential equation is solved by decomposing different parts,

calculating their values separately before using ray marching to accumulate the values in

each sample point on the incoming ray. These sample points are treated as differential

segments with constant coefficients. Indeed, such numerical integration can be estimated

by Monte Carlo sampling. The parameter t of ray can naturally be used as the measure of

displacement along the ray direction. Depending on the targeted convergence rate or frame

rate, the step size can be set larger or smaller. Normal Monte Carlo sampling would

randomly pick a point in each segment for radiance estimation. However, for estimating

the light transfer integral which is only one dimensional and often has a smooth function,

standard numerical integration may have an edge over the Monte Carlo method. By using

a stratified pattern (Pauly, 1999) which assigns same offset for each segment and

randomizes the offset for a new ray, it can be shown to have a lower variance than Monte

Carlo. The p.d.f. for such samples is also very simple, which is a constant equal to the step

size Δ𝑡𝑡.

In the simplest case of volume rendering, where the participating media has homogenous

attributes, both emission and attenuation factors can be directly evaluated by 𝑒𝑒−𝜎𝜎𝜎𝜎 (where

s is the length of the ray segment of interest), which is the direct result of solving the

33

differential equation 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐿𝐿𝑜𝑜(𝑥𝑥,𝜔𝜔) = −𝜎𝜎𝑡𝑡(𝑥𝑥,𝜔𝜔)𝐿𝐿𝑖𝑖(𝑥𝑥,−𝜔𝜔), also known as Beer’s law. If the

distribution of media density or other properties has an analytical solution for such

differential equation, the analytical solution (if it is an elementary function) can be directly

evaluated without using sampling techniques, which is used where an analytical solution

is impossible, unknown, or too complex, or in the case where the distribution is a

customized discrete data set.

As mentioned before, the attenuation term and the augmentation term can be treated

separately in computation, which maps well to the accumulation of mask and intermediate

color in our implementation, expressed by

𝐿𝐿𝑖𝑖(𝑥𝑥,𝜔𝜔) = 𝑇𝑇(𝑥𝑥0 → 𝑥𝑥)𝐿𝐿𝑜𝑜(𝑥𝑥0,−𝜔𝜔) + ∫ 𝑇𝑇(𝑥𝑥′ → 𝑥𝑥)𝑆𝑆(𝑥𝑥′ → −𝜔𝜔)𝑑𝑑𝑑𝑑𝑇𝑇
0 ,

where 𝑇𝑇(𝑥𝑥0 → 𝑥𝑥) is multiplied to the mask and ∫ 𝑇𝑇(𝑥𝑥′ → 𝑥𝑥)𝑆𝑆(𝑥𝑥′ → −𝜔𝜔)𝑑𝑑𝑑𝑑𝑇𝑇
0 is estimated

with samples and added to the immediate color. Transmittance coefficient T can either be

analytically evaluated or estimated with samples as mentioned in previous paragraph.

The sampling estimation of the augmentation term ∫ 𝑇𝑇(𝑥𝑥′ → 𝑥𝑥)𝑆𝑆(𝑥𝑥′ → −𝜔𝜔)𝑑𝑑𝑑𝑑𝑇𝑇
0 can use

the same stratified pattern mentioned before to reduce the variance. However, inside

𝑆𝑆(𝑥𝑥′ → −𝜔𝜔) = 𝐿𝐿𝑣𝑣𝑣𝑣(𝑥𝑥,𝜔𝜔) + 𝜎𝜎𝑠𝑠(𝑥𝑥,𝜔𝜔)∫ 𝑝𝑝(𝑥𝑥,−𝜔𝜔′ → 𝜔𝜔)𝐿𝐿𝑖𝑖(𝑥𝑥,𝜔𝜔′)𝑑𝑑𝜔𝜔′
S , there is another

integral which accounts for in-scattering from all directions, the estimation of which is

another non-trivial task. For simplicity, we only consider single scattering from direct

lighting. A light sample can be taken as in next event estimation and a shadow ray is shot

from the current ray segment’s sample point to the light to detect visibility. Note that this

method neglects the contribution from indirect lighting to the in-scattering, which is often

too weak to affect the rendering equality.

It is worth mentioning that it is also possible to use metropolis light transport for sampling

the in-scattering. A random number can be stored here for mutation in every frame so that

directions with large contribution can be easily discovered and focused on, which is

especially suitable for very anisotropic participating media.

34

Two sample images are shown in Figure 11 to exhibit the visual effect of volume rendering.

The first image shows strong scattering and absorption of light in a room with dense

homogenous smog. The smog has a Henyey-Greenstein asymmetry parameter of 0.7,

indicating that incident lights are primary scattered forward, as can be seen in the narrow

shape of the illuminated cone under the area light. The second image illustrates fog with

white emission and exponentially attenuated density in vertical direction, which is the

miniature of the atmosphere in a box.

Figure 11 Left: Homogenous smog with strong absorption and forward scattering Right: Fog with exponential density

5.3 Subsurface Scattering

Scattering and absorption can happen inside objects as well. The reason for using BSDF to

estimate the radiance from material is that many material can be categorized into metallic

(which reflects most of the energy at surface) or dielectric which are either too opaque or

too transparent to exhibit any obvious scattering effect. For material with an albedo high

enough to be considered as non-transparent and not enough to be considered as opaque like

jade, milk and skin, the effect of scattering inside cannot be ignored, for which BSDF

cannot give sufficient approximation of the surface radiance. Instead, BSSRDF (bi-

directional subsurface scattering reflectance distribution function) is used to include the

contribution to the outgoing radiance of the point in interest from incoming radiance on

other surface points. A 6-dimensional function

35

𝑆𝑆(𝑥𝑥𝑖𝑖,𝜔𝜔𝑖𝑖, 𝑥𝑥𝑜𝑜 ,𝜔𝜔𝑜𝑜) (𝑥𝑥𝑜𝑜 is known, the other 3 variables are all 2D) can be used to describe the

sum of all radiance scattered from 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑜𝑜 in all possible paths. Again, to calculate the

outgoing radiance of the point in interest, one must integrate the contribution from points

all over the object surface, which can be estimated by randomly sampling a surface point

as a Monte Carlo process. However, the BSSRDF itself is largely unknown due to the

complexity of the multiple scattering problem. Also, points in the surrounding may

contribute most of the radiance which implies that indiscriminately choosing a surface

point has an intolerably low convergence rate.

To provide a practical approximation of general subsurface scattering, Jensen et al.

introduced the dipole diffusion model (2001), which decomposes the BSSRDF into a

diffusion term and a single scattering term as a simplification. Observing that the radiance

distribution becomes nearly isotropic after thousands of scatterings in material with very

high albedo like milk, they proposed a diffusion model that transforms the incoming ray

into a dipole source and uses the radial diffusion profile of the material to compute the

outgoing radiance. The diffusion term has an exponential falloff with respect to the distance

from the incidence point, which provides an effective p.d.f. for importance sampling. Note

that the key idea of this model is to interpolate between 2 extreme cases - pure single

scattering and pure diffusion – for general material, which turns out to be an insufficient

approximation when highly physically authentic pictures are required.

In our implementation, we only consider the contribution of the single scattering term as a

demonstration of the idea of subsurface scattering. The program can be easily extended

with an additional module for the diffusion term estimation. Since single scattering only

happens when the refraction rays of 𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑜𝑜 meet inside the material, BSSRDF is not

directly evaluated by taking a surface sample. Instead, after the ray intersects the surface

with BSSRDF component, a random distance is generated by −log (𝜉𝜉)
𝜎𝜎′𝑠𝑠

, where 𝜉𝜉 is the unit

uniform random variable and 𝜎𝜎′𝑠𝑠 = (1 − 𝑔𝑔)𝜎𝜎𝑠𝑠 is the reduced scattering coefficient

corresponding to the tendency of forward scattering, followed by moving the intersection

point by such distance in the ray direction to become the point of single scattering and

using the phase function p to importance sample the direction of scattering as the direction

of the next ray. Note that this method is only suitable for rendering translucent objects with

36

low to moderate albedo like jade. Objects with high albedo still require at least the dipole

model to render a reasonable appearance.

A pair of sample images are shown in Figure 12 to show the Stanford bunny with a deep

jade color rendered as translucent and opaque material. The result of the translucent

material shows the effect of subsurface single scattering. Note that thin parts of the object

like the ear has a more acute response to the change of albedo.

Figure 12 Left: Bunny with subsurface scattering Right: Bunny without subsurface scattering

5.4 Environment Map and Material Texture

As mentioned in the introduction, the heavy usage of textures can often be found in

rasterization based graphics used in most of the mainstream video games. PBR workflow,

as the de-facto industrial standard, uses a variety of textures to describe the varying material

attributes across the texture space. Apart from the basic diffuse color texture or albedo map,

a roughness map is used to define the shape of the distribution of normal in the microfacet

model, such that the roughness value of 0 indicates a perfectly smooth surface point which

only reflects at the mirroring direction and the roughness value of 1 indicates a surface

point with almost equal amount of reflection in every direction which makes it no longer

look glossy. Similarly, a metalness map is used to define the level of similarity to metal of

each texel. A metalness value of 1 defines a surface point that only has specular reflection

with some absorption of specific wavelengths which simulates the behavior of metal, while

37

a metalness value of 0 defines a completely dielectric surface point that follows the Fresnel

equation with real index of refraction. More commonly, a uniform white specular color is

defined for every opaque object to substitute the evaluation of 𝑅𝑅0 in the Fresnel equation

when index of refraction is not defined. Furthermore, a normal map is used to simulate

microscopic geometry for material with a complex surface texture and ambient occlusion

maps are used to compensate the corresponding effect in the lack of global illumination in

rasterization based graphics. For still objects, light maps which baked the color bleeding

or shadow (requiring still light model) can be used in surrounding surfaces like walls or

floors to give a more realistic feeling of the rendering. Since it is generally infeasible to

generate real-time samples in rasterization based graphics, usually an irradiance map and

a pre-filtered mipmap are precomputed from the environment map of the scene to simulate

diffuse and glossy reflection of indirect lighting respectively.

However, for path tracing, we only need the maps related to material attributes in texture

space, i.e. albedo map, metalness map, and roughness map, because we are using a global

illumination algorithm. We may also want to use environment maps as image-based lights

– lighting from the outer environment like sky and sunlight are usually hard to be modeled

as solid objects. Also, if the surrounding environment is sufficiently far, using environment

map can avoid the ponderous task of modeling all objects from the border of the bounding

environment to the point being shaded and accumulating all possible indirect lightings

between any two objects. One can simulate the intricate indirect lighting effect by sampling

the texel in the reflected ray direction if nothing in the local setting (the models in interest)

is hit, treating the outer environment as an infinitely far sphere so that all rays can be seen

as being shot from the center of the sphere. The environment map can either be stored as a

cubemap or a spherical projection map. In our implementation, we use spherical projection

maps due to easier computation and less chance of artefact.

Two sample images are shown in Figure 13 to demonstrate the effect of environment map

as image based lighting and the material texture as surface attribute control. The second

image simply provides albedo, roughness and metalness map to transform the diffuse back

wall of the original Cornell box to a realistic scratched metal.

38

Figure 13 Upper: Armadillo under environment lighting Lower: Cornell Box with scratched metal wall

39

Chapter 6 SIMD Optimization

With each thread rendering a screen pixel, the problem of path tracing can be solved in an

embarrassingly parallel way, without the need of inter-thread communication. However, it

is hard to exploit the full capability of single-instruction-multiple-data (SIMD). There is

very little locality in the memory access pattern due to generally inconsistent scene

geometry, which means almost all scene data need to be stored in global memory or texture

memory. Even though the memory access pattern may be relatively congruent in the first

bounce, it can be as divergent as possible in the consequent bounces, implying low

effective memory bandwidth. Moreover, we have thread divergence in the code

everywhere. Although some if-else branches can be merged to a single branch, some are

harder or impossible to do so. For example, the branches of different BSDF types contain

different sampling functions and different material parameters, which is impossible to

merge as one. Special methods need to be designed to alleviate this issue. In addition, the

Russian roulette terminates thread with some probability, causing diminishing useful

operations and warp occupancy as the iteration number increases.

The following sections will introduce three types of optimizations based on CUDA

architecture – data structure rearrangement, thread divergence reduction and thread

compaction used in our path tracer to increase the SIMD efficiency and reduce the overall

rendering time. The necessity of most of these optimizations comes from the real-time

rendering requirement, without the possibility to design fixed number of samples for each

rendering branch. After that, two sections will be dedicated to discussion of optimizations

on specific components - a ray-triangle algorithm better for SIMD performance will be

introduced and we will propose a method for parallel construction of kd-tree on GPU.

6.1 Data Structure Rearrangement

Improper memory access pattern is often the bottleneck of a SIMD program. Therefore, it

is our first priority to rearrange the data structure before other components are inspected

for optimization.

40

First, “flattening” the data structure to continuous memory spaces is a key method to

improve memory coalescing and reduce memory access. Using kd-tree as SAS, a

traditional CPU path tracer stores a tree structure with a deep hierarchy of pointers

(Figure 14).

Figure 14. The commonly-used tree structure of kd-tree

Undoubtedly, this structure is unsuitable for GPU. The dynamic memory allocation can

give very bad memory coalescing, seriously limiting the effective memory bandwidth in

path tracing. One can easily flatten the kd-nodes to an array with the child pointers replaced

by child indices, giving an array-of-structures (AoS). However, this is far from the

optimum. Instead of keeping a separate triangle indices list for every node, we can store

the pointers to triangles continuously in an array and keep only the array offset in node

structure. This in large chance gives either coalesced memory access or better cache use

because unlike triangles, kd-nodes have a better locality - if we use serial recursion in kd-

tree construction, indices of nodes near the bottom of the tree with a near common ancestor

will be very near to each other. Similarly, the triangle data can also be stored in an array,

with pointers in the triangle list array substituted by indices.

Second, compression of the data structure is another aspect we need to concern about to

improve memory efficiency. Notice that in the above kd-node structure, we have some

variables that can be represented using few bits – axis (0, 1 or 2 for x, y or z), isLeaf (0 or

1) and the number of triangles (a leaf only contains a few triangles) if we want to only keep

offsets in the global triangle list. Notice that the isLeaf predicate can be merged with the

axis predicate so that an axis value of 3 indicates a leaf. Rather than using separate variables

to store them, one can compress them to one variable. In my path tracer, axis (which

41

contains isLeaf), number of child triangles (in case of leaf), and left child index are

compressed into one 32-bit integer with a 2|6|24 partition using bit operations, which helps

to compress a kd-node from 25 bytes to 16 bytes, where 3 words are reserved for split

position, right child index and triangle array offset. By compressing left child index from

32 bits to 24 bits, it limits the number of kd-nodes to 16,777,216, which is enough for most

cases. The 16-byte compression not only reduces space complexity, but provides memory

alignment, improving efficiency of memory access.

Third, SoA can be used in place of AoS when spatial locality is high for neighboring

threads or statements. As mentioned before, path tracing does not have a consistent locality

for each procedure. Thus, a mixture of SoA and AoS can be used to find a balance between

fewer memory accesses and more coalesced memory accesses that can optimize the overall

speed. The catenated triangle indices array is an example. In addition, some triangle data

(precomputed transformation coefficients, to be introduced later) can be extracted to

separate SoA to achieve better cache use when iterating through all triangles in a leaf as

triangle indices in a leaf are usually closed to each other. In CUDA architecture, a 128-byte

cache line is fetched for each global memory access (NVIDIA, 2015). In a loop that visits

some continuous elements, if number of attributes is fewer than number of elements, in

large probability fewer global memory access will take place as following access of each

attribute can be already in the cache.

6.2 Thread Divergence Reduction

Another important factor of SIMD optimization is minimizing thread divergence. The

following code snippet (Figure 15) illustrates some strategies used to reduce thread

divergence. First, common statements in branches are extracted to minimize number of

operations in each branch. Second, in-place swap is used to replace hardcoded-like

assignment. Third, if possible, bit operations are used to replace if-else. Branches with

different values assigned to the same variable can be substituted by masking and adding

the two values.

42

Figure 15. Illustration of an optimization by reducing thread divergence in kd-tree traversal

The snippet also shows another optimization – reduction of global memory access. Rather

than storing the pointer to kd-node in stack, it is better to store the index. Otherwise, there

will be an extra memory read for every other possibility which will not be executed. The

optimization of memory access and thread divergence is often mutual. By reducing

memory access, one decreases time taken to execute a divergent branch. By decreasing

branch divergence, one reduces possible needs of redundant memory access.

6.3 Thread Compaction

Russian roulette is necessary for transforming the theoretically infinite ray bounces to a

sampling process with finite stages, which is terminated by probability. While decreasing

the expected number of iterations for each thread in every frame and causing an overall

speedup due to early terminated thread blocks, it scatters terminated threads everywhere,

giving a low percentage of useful operations across warps (32 threads in a warp are always

executed as a whole) and an overall low occupancy (number of active warps / maximum

number of active warps) in CUDA, which aggravates as number of iterations increases.

Relating to the set of basic parallel primitives, one naturally finds that stream compaction

on the array of threads is very suitable for solving this problem. As illustrated in Figure 16,

assuming each warp only contains 4 threads and there is only one block with 4 warps

running on GPU for simplification and using green and red colors to represent active and

inactive threads, before stream compaction the rate of useful operations is 25% (3 active

43

threads out of 12 running threads) and after grouping the 3 active threads to a same warp,

the percentage of useful operations becomes 75%, equivalently, same amount of work can

be done by 1/3 amount of warps, leaving space for other blocks to execute their warps.

Also, if the first row is the average case for multiple blocks, the occupancy would be 75%

since each block with 4 warps has an inactive warp, implying that less amount of work can

be done with same amount of hardware resources. With stream compaction, occupancy is

close to 100% in first few iterations, before the time when total number of active threads

is not enough to fill up the stream multiprocessor.

Figure 16 Upper: Before thread compaction Lower: After thread compaction

In order to measure the performance impact of thread compaction, we designed a test

comparing frame rate of path tracing with and without thread compaction on our NVIDIA

GeForce GTX 960M for maximum trace depth from 1 to 10, and 20, 50, 100. The test scene

is the standard Cornell box rendering with next event estimation with 1,048,576 paths

traced in each frame.

Figure 17 Frame rate as the function of max trace depth, for program with and without thread compaction

44

As shown by Figure 17, without thread compaction, the frame rate experiences a rapid

decline in first 5 increments of max trace depth, after which the declination of frame rate

approximates a linear function until the depth when all threads become inactive probably

between 20 and 30. With thread compaction, the frame rate starts to surpass the original

one in depth 3 with only little falloff for every depth increment and become almost stable

after depth 5.

The reason thread compaction causes first two max depths slower is that thread compaction

has some overhead of initialization, which cannot be offset by the speedup provided by

stream compaction when terminated threads are too few. A struct stores next ray, mask

color, pixel position and state of activeness needs to be initialized at the beginning for each

thread and retrieved in every bounce. For stream compaction, we also use Thrust library

introduced in Chapter 2, which offers a remove_if () function to remove the array elements

satisfying the customized predicate. For this task, the customized predicate takes the struct

as the argument and checks whether the state of activeness is false to determine elements

to discard.

Nevertheless, we can also use stream compaction to do a rearrangement of threads such

that threads that will be running the same Fresnel branch in next iteration are grouped

together. The number of stream compaction operations will be equal to the number of

Fresnel branches (which in our case is 3). By using double buffering, the results of stream

compaction can be copied or appended to another array. After generating the resorted array,

the indices for the buffers are swapped. In our experiment with a simple scene adapted

from the Cornell box with glossy reflection, diffuse reflection and caustics, up to 30%

speedup can be achieved from regrouping the threads.

6.4 A More Efficient Ray-triangle Intersection Algorithm

A specific optimization on speed is the adoption of a more efficient intersection algorithm.

Ray-triangle intersection can be a performance bottleneck if the math operations are too

complex. Schmittler et al. (2004) introduced affine triangle transformation for acceleration

of a hardware pipeline. Instead of testing intersection of a fixed ray with varied triangles,

45

it tests a “unit triangle” against different expressions of the ray in different “unit triangle

spaces” from the view of each triangle, which requires an affine transformation.

𝑇𝑇∆(𝑋𝑋) = �
𝐴𝐴𝑥𝑥 − 𝐶𝐶𝑥𝑥 𝐵𝐵𝑥𝑥 − 𝐶𝐶𝑥𝑥 𝑁𝑁𝑥𝑥 − 𝐶𝐶𝑥𝑥
𝐴𝐴𝑦𝑦 − 𝐶𝐶𝑦𝑦 𝐵𝐵𝑦𝑦 − 𝐶𝐶𝑦𝑦 𝑁𝑁𝑦𝑦 − 𝐶𝐶𝑦𝑦
𝐴𝐴𝑧𝑧 − 𝐶𝐶𝑧𝑧 𝐶𝐶𝑧𝑧 − 𝐶𝐶𝑧𝑧 𝑁𝑁𝑧𝑧 − 𝐶𝐶𝑧𝑧

�

−1

�𝑋𝑋 − �
𝐶𝐶𝑥𝑥
𝐶𝐶𝑦𝑦
𝐶𝐶𝑧𝑧
��

The inverse matrix and the translation term can be computed offline and stored in a 4D

float vector for each dimension. Based on extraction of common geometry information,

this method reduces the 26 multiplications, 23 additions/subtractions required in the

standard ray-triangle intersection algorithm to 20 multiplications and 13

additions/subtractions. By separating the data of precomputed terms from the remaining

necessary triangle data (vertex normal and material index) to form a structure of two arrays,

an overall speedup of 10-20% can be achieved.

6.5 GPU SAH Kd-tree Construction

We will propose a GPU SAH kd-tree construction method in this section. So far, the CPU

construction of SAH kd-tree has a lower bound of O(N log N), which is still too slow for

complex scenes with more than 1 million triangles. It takes more than 10 seconds to

construct the SAH kd-tree for the 1,087,716-face Happy Buddha model on our Intel i7

6700HQ, which is a serious overhead. Given the immense power of current GPGPU, it is

a promising task to adapt the kd-tree construction to a parallel algorithm. A GPU kd-tree

construction algorithm was proposed by Zhou et al. (2008), which splits the construction

levels into large node stages where median of the node’s refitted bounding box is chosen

as the spatial split the and small node stages where SAH is used to select the best split.

Although with a high construction speed, the method sacrifices some traversal performance

due to the approximated choice of best splits in large node stages. In contrast, we will now

propose a full SAH tree construction algorithm on GPU.

First, similar to Wald’s CPU kd-tree construction model (2006), we create an event struct

containing the 1D position, type (0 for starting event, 1 for ending event), triangle index

(which is actually triangle address since at the beginning the node-triangle association list

is same as the triangle list), and a “isFlat” Boolean which marks whether the opposite end

46

has the same coordinate for every end of bounding boxes of triangles in all 3 dimensions,

which are stored in 3 arrays. For each dimension, the event array is sorted by ascending

position coordinate while keeping ending events before starting event when the positions

are same (we use the same routine as in the Wald’s algorithm – subtracting the triangle of

ending event from the right side before SAH calculation and adding the triangle of starting

event to the left side after the SAH calculation, which can guarantee that triangles with an

end lying on the splitting plane can find the correct parent – except for being parallel). Such

sort should be a highly efficient parallel sort like the parallel radix sort.

After that, we separate the struct attributes into a SoA (structure of arrays) for better

memory access pattern. Also, we need to create an “owner” array of length of number of

triangles, which is initialized to zeros as root has an index of 0, to store the index of owner

node, since we will be processing the nodes in parallel. So far, we have three position arrays,

three type arrays, three triangle address arrays, three isFlat arrays, and one owner array,

each of which has the same length of events from all nodes in current construction level.

Nevertheless, we also need an array for node-triangle association, which lists the indices

of triangles associated with nodes in current level in node-by-node order. Again, this node-

triangle association list (which will be called triangle list for short) also needs an owner

list, which we call “triOwner”, also initialized to zeros.

What still left for initialization are the two dynamic arrays – nodeList for storing all the

processed nodes, which are pushed into as groups from the working node array of current

construction level, linearly and leafTriList for storing all the triangles in leaves in leaf-by-

leaf linear order.

After all initializations are done, we choose a dimension with the largest span in the root’s

bounding box. Note that the selection of such dimension will be processed in parallel in

following iterations, at the moment of creating node structs for all newly spawned children

from the current level. The following explanation will treat the current construction level

a general level with many nodes other than level 0. The first parallel operation other than

sorting we perform is the inclusive segmented scan on the type array, the purpose of which

is to count the number of ending events before the current event (or including the current

event if it is an ending event) for use in the following calculation of number of triangles on

47

the left and right side of the splitting plane, alongside with the surface areas of bounding

boxes of the potential left child and right child, as is required to calculate the SAH function.

In this segmented scan, the owner array is used as a key to separate events from different

nodes. It is worth mentioning that for SAH calculation, the offset of the node’s events in

the event list is stored in the node struct, so that an event is able to know its relative position

in its belonging part in the array, which will be used together with the scanned result of

number of starting events to the left to derive the number of triangles in the left or right

subspace of the splitting plane. For SAH calculation for splitting plane with flat triangle

lying on it, we simplified the process by grouping all such flat triangles to the left side,

which in most cases has no influence on traversal performance, so that we do not need to

deal with the flat case specially in triangle counting. The information of a potential split is

stored in a struct containing SAH cost, two child bounding boxes, splitting position, and

number of left side and right side triangles. The array of such struct then undergoes a

segmented reduction to find the best split (with minimal SAH cost) for each node.

The next step is assigning triangles to each side, which is also the step where we determine

whether to turn the interesting node to a leaf. In the assigning function which is launched

for every event in current splitting dimension in parallel, we check whether the best cost is

greater than the cost of not splitting (which in most cases is proportional to the number of

the triangles in the node) or the number of triangles in the node is below a threshold we set.

If it is the case, we create a leaf by marking the “axis” attribute in the node struct with 3.

For assigning triangles to both children, our key method is to use a bit array of twice the

size of the current triangle list and let the threads of current events to assign 1 at the address

at the belonging side (or two sides if the triangle belongs to both left and right side), after

which the bit array is scanned to obtain the address of the triangle list in next level. Since

the events are in sorted order, an event can decide its belonging by comparing the index

with the index of the event chosen for best split. If the event is a starting event, and index

is smaller than the best index, the event will assign its triangle to the left side; and if the

event is an ending event, and the index is greater than the best index, the event will assign

its triangle the right side. Notice that because we are launching a thread for each event, a

triangle spanning across the splitting plane will be correctly assigned to both side by

different threads, without special care. In addition, flat triangles lying on the splitting plane

48

will be assigned to both sides (where isFlat variable is checked) to avoid the effect of

numerical inaccuracy in traversal which can cause artefacts.

Also, a leaf indicator array is assigned by the threads in the triangle assignment function

such that the indicator array would have a 1 in the position of triangles that belong to a

newly created leaf in the triangle list, which will be scanned to determine the address of

the triangle in the leafTriList, similar to how the addresses of triangles in the next level’s

triangle list are determined, and reduced to obtain the number of triangles in the leafTriList

in current level which is used to calculate the new size of the whole leafTriList to be used

as next level’s offset. Since we also need to know the local offset of the leaf’s triangles in

the part of current level in leafTriList, we need to do a segmented reduction followed by

an exclusive scan on the leaf indicator array before assigning the offset to the leaf’s struct.

Before spawning new events for the child nodes, we need to finish the rest of the operations

on the triangle list. The triOwner list for the new level can be easily generated by “spawning”

a list from the original triOwner list with doubled size by appending the list to itself with

the owner index offset by the original number of owners of nodes in the second half and

performing a stream compaction using the aforementioned bit array as the key to remove

the entries for triangle not belonging to the specific side. A question may be that after the

stream compaction, the owner indices are not incremental, which cannot be used for

indexing. However, this issue can be easily solved by doing a parallel binary search on the

returned key array of the segmented reduction (or counting, more properly) on the constant

array of 1 (the returned value array of which is stored as the counts of the triangles in next

level’s nodes) with the just generated next level’s triOwner array itself as the key, whose

result is used to replace the array. In a similar way, the triangle list for next level is

“spawned” from the original triangle list and compacted by the bit array.

Finally, we explain how the next level’s events (type, split position, isFlat and triangle

address) are generated. The method is surprisingly simple – after duplicating the event list,

we only need to produce a bit array for events by checking the corresponding values in the

bit array for triangles, which only requires reading the values in current events’ triangle

address list as the pointer to the position in the bit array for triangle. The 3 attributes type,

split position and isFlat can be spawned by duplicating the original array and perform a

49

stream compaction with the bit array as the key. The triangle address array itself can spawn

the array for next level by duplicating, reading the new addresses in the previously scanned

result of the triangle bit array and also doing a stream compaction.

So far, there is only one last array to spawn – the event’s owner list in the next level, which

can be generated in the same method as the triOwner array uses – “stream compaction –

segmented reduction – binary search”. Before next iteration begins, node structs for next

level are created using data like counts and offsets in the corresponding previous generated

arrays and pushed to the final node list as a whole level. The splitting axes for the next

level are also chosen in this process by comparing the lengths of the 3 dimensions of the

bounding box. If an axis different from current axis is chosen, the 4 event arrays for the 3

dimensions are “rotated” to the desirable place – if 0 stands for the splitting axis and current

splitting axis is x, y and z will be stored under index 1 and 2; if next splitting axis is z, the

memory will have a “recursive downward” rotation so that z is rotated to 0, x is rotated to

1, y is rotated to 2. Finally, the pointers of all working arrays are swapped with the buffered

arrays. The termination condition is that the next level has no nodes.

We also performed a test comparing the speed between Wald’s CPU construction and our

GPU construction of the same SAH kd-tree (full SAH without triangle clipping) on a

computer with Intel i7-4770 processor and NVIDIA GTX 1070 graphics card. The result

(Table 2) shows that a sufficiently large model is required for our GPU construction to

outperform the CPU counterpart, due to the overhead of memory allocation and transfer.

A 5x speedup can be obtained when the model size goes beyond 1M, which indicates that

our method can be used for ray tracing large models to greatly reduce the initialization

overhead while maintaining the same tree quality.

Model Face Count CPU(s) GPU(s) Speedup
Cornell 32 0.001 0.046 0.02x
Suzanne 968 0.016 0.095 0.17x
Bunny 69,451 1.442 0.655 2.20x
Dragon 201,031 3.705 1.100 3.37x
Buddha 1,087,716 13.903 2.801 4.96x

Table 2 Speedup of our GPU SAH Kd-tree comparing with Wald's CPU algorithm

50

Chapter 7 Benchmarking

Benchmarking different path tracing engines is not a trivial task. Different engines have

different strengths at different types of rendering tasks. In addition, rendering methods may

be different for different engines, thus it is difficult to choose a measure of the performance.

If one engine uses Metropolis Light Transport and another engine uses brute force path

tracing, one cannot claim that the first engine has a better performance than the second one,

just because it has a larger frame rate (or samples per second for offline path tracing).

Normally, we compare the performance by convergence rate – in same amount of time, the

engine converges more has a better performance – measured by the variance level. A

special reminder is that one can only use the variance measure when the engines use same

basic sampling method – the only two we introduced before are normal Monte Carlo

sampling and Markov Chain Monte Carlo sampling (used only in MLT) – as MLT will

always try to find a smallest variance even if the color is incorrect (also known as start-up

bias). Alternatively, it seems that one can also compare the absolute difference between the

rendered image and the ground truth. However, the BSDF used in different engines are

usually slightly different, in case of which the absolute difference is an invalid measure. A

practical solution of this issue is to force different engines use the same basic sampling

method (in most cases it can be changed in options) and compare the convergence rate. It

is important to notice that images generated by different engines must all be tone mapped

or non-tone mapped before a variance comparison can be done. Or if it is known that the

engines to be compared use the same specific sampling method (like next event estimation

or bi-directional path tracing), it is simpler to directly compare the frame rate. However,

one should also look at the differences between the rendered image and the ground truth to

prevent some low-quality images or artefacts produced by incorrect implementation or the

deviation from the industrial standard.

Two scenes are used to benchmark our path tracer against some free mainstream path

tracers. The first scene is the default Cornell Box with all Lambertian diffuse surfaces and

a diffuse area light, rendered by next event estimation. The real-time path tracing sample

program of NVIDIA’s Optix ray tracing engine is used to compare with our path tracer

51

(Figure 18). Since the sample program is open-source and uses the same next event

estimation method and both our program and NVIDIA’s program are real-time path tracers,

we can compare the performance by directly comparing the frame rate of rendering. Table

3 shows the frame rate of rendering of our path tracer and NVIDIA’s path tracer in 512x512

resolution with 4 samples taken for each pixel in each frame (Figure 18), on the mid-end

NVIDIA GeForce GTX 960M graphics card and the high-end NVIDIA GeForce GTX

1070 graphics card.

Figure 18 Left: Our Render Right: NVIDIA's Render

 GTX 960M GTX 1070

NVIDIA’s Path Tracer 13.52 fps 30.0 fps

Our Path Tracer 14.02 fps 41.5 fps

Speedup 3.7% 38.3%
Table 3 Speedup of our path tracer on different graphics cards, comparing with NVIDIA's

A reason for our path tracer to gain a larger speedup on high-end graphics card is that high-

end graphics cards have larger memory bandwidth, which allows faster memory operations

in stream compaction used in our path tracer but not in NVIDIA’s path tracer.

The second scene is the BMW M6 car modeled by Fred C. M’ule Jr. (2006), which aims

for testing the capability of our path tracer to render models in real application. For

comparison, we chose the Cycles Render embedded in the Blender engine. Albeit being an

52

off-line renderer, it also has a “preview” function to progressively render the result in real-

time. Notice that Cycles Render uses a different workflow to blend the material color and

may use different BSDF formulae on same material attribute, causing the appearance to be

different (the glasses and metal rendered by Cycles is less reflective on same attributes,

and the overall tone is different). It is extremely hard to tune the rendering result to the

same, but we can still guarantee that the workload on each path tracer is almost the same,

as the choice of material component depends on the Fresnel equation.

Since the ways of implementation may also be vastly different, we use the convergence

rate in one minute as the measure of the performance. It is important to know that it is

invalid to use the variance of all pixel in the picture to compare for convergence. As

convergence corresponds to noise level in Monte Carlo sampling, a small region that will

be rendered to a uniform color is used for convergence test. For this scene, it is convenient

to just choose the upper-left 64x64 pixel to compare for variance, as the wall has a uniform

diffuse material which will produce nearly same color under current lighting condition.

Also, the rendered result of one hour from our path tracer is used as the ground truth for

variance comparison (it is equivalent to use either side’s). For illumination, a 3200x1600

environment map for a forest under sun is used.

The following images in Figure 19 are the grey scale value of the upper-left 64x64 square

region from Cycles Render, our path tracer, and the ground truth. By only looking with the

eyes, one is difficult to judge which of our result and Cycles’ result has a lower noise level.

However, we can numerically analyze the variance by evaluation of the standard deviation

of the pixel values. By using OpenCV, the average value and the standard deviation of all

grey scale pixels can be easily obtained, which are listed in Table 4.

Figure 19 Left, Middle & Right: Cycles’, our, ground truth's upper left 64x64 pixels in greyscale

53

 Average Std. Deviation Convergence

Theirs 98.42 10.31 16.7%

Ours 98.95 9.41 18.3%

Ground Truth 104.6 1.72 100%

Table 4 Comparing convergence rate of our path tracer and Cycles Render in 1 minute's render time

From the data, we can see that our path tracer does have a slightly better performance than

Cycles Render. Although due to time restriction, we are not able to carry out more tests

using different scenes and with other mainstream renderers, the complexity of such test

scene (700K+ faces, glossy, diffuse, refraction BSDF, environment light) can be a solid

proof that our path tracer has at least the same level of performance with current

mainstream rendering software. For the reader’s interest, we also provide the sample

pictures of our and Cycles’ rendering results for 1 minute, and our rendering result for 1

hour, which can be found in the appendix.

54

Chapter 8 Conclusion

8.1 Summary

This thesis focuses on how to improve the solution to the real-time path tracing problem

by introducing and discussing possible optimizations in 3 categories – SAS, sampling and

SIMD, which are implemented in a program with real-time rendering and interaction

capability. While the SIMD optimization bases itself on the parallel computing model in

GPGPU and aimed specially for the real-time requirement, the first two categories – SAS

and sampling – are not hardware dependent and also used in off-line renderers as they are

defined in the domain of a single computing thread. However, it is also possible to improve

the models involved in these two categories to achieve better collaboration with the

GPGPU model. For SAS, as a common bottleneck of ray tracing processes, SAH based kd-

tree and BVH were introduced for being the optimum of their peers in minimizing expected

global cost of ray-primitive intersection test and their indispensable functions in different

applications, and optimization techniques on such data structure including triangle clipping

and short stack traversal for kd-tree and node refitting for dynamic BVH are also discussed

with implementation details. In the chapter for sampling, different context-based

optimization methods on Monte Carlo algorithm which are all aimed for decrease variance

in rendering – importance sampling on BSDF, next event estimation for direct lighting,

multiple importance sampling combining the previous two, and bidirectional path tracing

for difficult lighting conditions – were introduced. Moreover, Metropolis Light Transport

as a modification of the basic Monte Carlo process based on Markov Chain was introduced

and some implementation details on GPU were shared. For SIMD optimization, data

structure rearrangement, code-level thread divergence reduction, thread compaction as

three different types were illustrated with codes and test cases. A more efficient ray-triangle

intersection solution which transforms the problem space was cited for its contribution on

the performance increase of our program. More importantly, we proposed a new GPU

construction algorithm for SAH kd-tree in full details, which turns out to help greatly

reducing the initialization overhead for complex model. In addition, the underlying

mechanism of rendering effects chosen and supported in our program – surface-to-surface

55

reflection/refraction, volume rendering, and subsurface scattering were analyzed to clarify

possible complications in usage. For most methods we introduced and discussed, test cases

on our path tracer were provided to verify the ideas. Finally, we benchmarked our program

with the path tracing demo in NVIDIA’s Optix engine and a free mainstream path tracer to

prove that our program has a large advantage in rendering simple scenes like the Cornell

Box by improving the performance by up to 30% and slightly outperforms a free

mainstream path tracer for a complex rendering of a car, which means it is at least

competitive with most of the mainstream path tracers nowadays in real-time rendering of

models with industrial complexity. By analyzing, gathering, testing, and integrating

different optimization techniques into a whole process, and choosing the correct rendering

methods, we can efficiently produce aesthetically-pleasing, photorealistic results.

8.2 Limitations & Recommendations for Further Work

Given the immense potential of GPGPU, it is possible to see path tracing offering a

photorealistic, film standard experience, replacing rasterization-based graphics to be the

gaming standard in the future as the hardware performance continues to multiply. However,

improvements in algorithm and software structure are also necessary to reduce as much

workload as possible to accelerate the coming of such day. This thesis addresses many

distinctive issues of real-time path tracing such as large thread divergence and dynamic

geometry. However, many problems that may appear in future real-world applications of

path tracing have not been considered due to the time limit. One such problem is to

efficiently render a large set of animation data which may contain particle system or

complex deformation. Another problem is the insufficient optimization of the spatial

acceleration structure which is a bottleneck in ray-traced graphics. New algorithms or

hardware need to be developed to continuously improve the traversal speed and update or

rebuild the SAS with minimal efforts. In addition, better parallelization methods are still

required for some algorithms with relatively obscure parallelizability but tremendous serial

performance like Metropolis Light Transport, even though many have been developed.

Moreover, parsing can be transferred to the GPU to greatly reduce the initialization time

of geometrically complex scenes.

iv

Bibliography

Ashikhmin, M., & Shirley, P. (2000). An anisotropic Phong BRDF model. Journal of
graphics tools, 5(2), 25-32.

Beason, K. (2007). Smallpt: Global Illumination in 99 lines of C++. Retrieved from
http://www.kevinbeason.com/smallpt/

Chandrasekhar, S. (1960). Radiative Transfer. New York: Dover Publications. Originally
published by Oxford University Press, 1950.

Chandrasekhar, S. (1960). The stability of non-dissipative Couette flow in hydromagnetics.
Proceedings of the National Academy of Sciences, 46(2), 253-257.

Cook, R. L., & Torrance, K. E. (1982). A reflectance model for computer graphics. ACM
Transactions on Graphics (TOG), 1(1), 7-24.

Foley, T., & Sugerman, J. (2005, July). KD-tree acceleration structures for a GPU raytracer.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware (pp. 15-22). ACM.

Henyey, L. G., & Greenstein, J. L. (1941). Diffuse radiation in the galaxy. The
Astrophysical Journal, 93, 70-83.

Jensen, H. W., Marschner, S. R., Levoy, M., & Hanrahan, P. (2001, August). A practical
model for subsurface light transport. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques (pp. 511-518). ACM.

Kajiya, J. T. (1986, August). The rendering equation. In ACM Siggraph Computer
Graphics (Vol. 20, No. 4, pp. 143-150). ACM.

Kopta, D., Ize, T., Spjut, J., Brunvand, E., Davis, A., & Kensler, A. (2012, March). Fast,
effective BVH updates for animated scenes. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (pp. 197-204). ACM.

Lafortune, E. P., & Willems, Y. D. (1993). Bi-directional path tracing.

NVIDIA. (2015). Memory Transactions. NVIDIA® Nsight™ Development Platform,
Visual Studio Edition 4.7 User Guide. Retrieved from
http://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaex
periments/sourcelevel/memorytransactions.htm

NVIDIA. (2017). CUDA Toolkit Documentation. Retrieved From
http://docs.nvidia.com/cuda/thrust/#axzz4dK4GrjBF

Pauly, M. (1999). Robust Monte Carlo Methods for Photorealistic Rendering of
Volumetric Effects (Doctoral dissertation, Master’s Thesis, Universität Kaiserslautern).

v

Pharr, M., Jakob, W., & Humphreys, G. (2011). Physically based rendering: From theory
to implementation. Second Edition. Morgan Kaufmann.

Santos, A., Teixeira, J. M., Farias, T., Teichrieb, V., & Kelner, J. (2012). Understanding
the efficiency of KD-tree ray-traversal techniques over a GPGPU architecture.
International Journal of Parallel Programming, 40(3), 331-352.

Schlick, C. (1994, August). An Inexpensive BRDF Model for Physically‐based Rendering.
In Computer graphics forum (Vol. 13, No. 3, pp. 233-246). Blackwell Science Ltd.

Schmittler, J., Woop, S., Wagner, D., Paul, W. J., & Slusallek, P. (2004, August). Realtime
ray tracing of dynamic scenes on an FPGA chip. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (pp. 95-106). ACM.

Veach, E. (1997). Robust monte carlo methods for light transport simulation (Doctoral
dissertation, Stanford University).

Vinkler, M., Havran, V., & Bittner, J. (2014, May). Bounding volume hierarchies versus
kd-trees on contemporary many-core architectures. In Proceedings of the 30th Spring
Conference on Computer Graphics (pp. 29-36). ACM.

Wald, I., & Havran, V. (2006, September). On building fast kd-trees for ray tracing, and
on doing that in O (N log N). In Interactive Ray Tracing 2006, IEEE Symposium on (pp.
61-69). IEEE.

Walter, B., Marschner, S. R., Li, H., & Torrance, K. E. (2007, June). Microfacet models
for refraction through rough surfaces. In Proceedings of the 18th Eurographics conference
on Rendering Techniques (pp. 195-206). Eurographics Association.

Ward, G. J. (1992). Measuring and modeling anisotropic reflection. ACM SIGGRAPH
Computer Graphics, 26(2), 265-272.

Zhou, K., Hou, Q., Wang, R., & Guo, B. (2008). Real-time kd-tree construction on graphics
hardware. ACM Transactions on Graphics (TOG), 27(5), 126.

vi

Appendix

The following pictures show the result of rendering a BMW M6 car for one minute in
Cycles Render, one minute in our path tracer, and one hour in our path tracer, successively.
The BMW M6 car model was modeled by Fred C. M'ule Jr in 2006, under CC-Zero (public
domain) license, downloaded from http://www.blendswap.com/blends/view/3557.

https://creativecommons.org/publicdomain/zero/1.0/

vii

	Chapter 1 Introduction
	1.1 Background Information
	1.2 Objectives of Project
	1.3 Layout of Thesis

	Chapter 2 Overview of Software Workflow
	Chapter 3 Spatial Acceleration Structure
	3.1 Choice of SAS
	3.2 Surface Area Heuristics
	3.3 Triangle Clipping in Kd-Tree Construction
	3.4 Kd-tree Traversal
	3.5 SAH-based BVH
	3.6 Automatic BVH Refitting

	Chapter 4 Sampling Algorithm
	4.1 The Rendering Equation
	4.2 Stratified Sampling vs. Anti-aliasing Filters
	4.3 BSDF and Importance Sampling
	4.4 Next Event Estimation
	4.5 Fresnel Switch and The Russian Roulette
	4.6 Multiple Importance Sampling
	4.7 Bi-directional Path Tracing
	4.8 Metropolis Light Transport

	Chapter 5 Rendering Effects
	5.1 Surface-to-surface Reflection/Refraction
	5.2 Volume Rendering
	5.3 Subsurface Scattering
	5.4 Environment Map and Material Texture

	Chapter 6 SIMD Optimization
	6.1 Data Structure Rearrangement
	6.2 Thread Divergence Reduction
	6.3 Thread Compaction
	6.4 A More Efficient Ray-triangle Intersection Algorithm
	6.5 GPU SAH Kd-tree Construction

	Chapter 7 Benchmarking
	Chapter 8 Conclusion
	8.1 Summary
	8.2 Limitations & Recommendations for Further Work

	Bibliography
	Appendix

