
20

Hardware-Accelerated Dual-Split Trees

DAQI LIN, University of Utah
ELENA VASIOU, University of Utah
CEM YUKSEL, University of Utah
DANIEL KOPTA, University of Utah
ERIK BRUNVAND, University of Utah

Bounding volume hierarchies (BVH) are the most widely used acceleration structures for ray tracing due to
their high construction and traversal performance. However, the bounding planes shared between parent and
children bounding boxes is an inherent storage redundancy that limits further improvement in performance
due to the memory cost of reading these redundant planes. Dual-split trees can create identical space partition-
ing as BVHs, but in a compact form using less memory by eliminating the redundancies of the BVH structure
representation. This reduction in memory storage and data movement translates to faster ray traversal and
better energy efficiency. Yet, the performance benefits of dual-split trees are undermined by the processing
required to extract the necessary information from their compact representation. This involves bit manip-
ulations and branching instructions which are inefficient in software. We introduce hardware acceleration
for dual-split trees and show that the performance advantages over BVHs are emphasized in a hardware ray
tracing context that can take advantage of such acceleration. We provide details on how the operations needed
for decoding dual-split tree nodes can be implemented in hardware and present experiments in a number of
scenes with different sizes using path tracing. In our experiments, we have observed up to 31% reduction in
render time and 38% energy saving using dual-split trees as compared to binary BVHs representing identical
space partitioning.

CCS Concepts: •Computingmethodologies→Ray tracing;Graphics processors; •Computer systems
organization→ Parallel architectures.

Additional Key Words and Phrases: acceleration structures

ACM Reference Format:
Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand. 2020. Hardware-Accelerated Dual-Split
Trees. Proc. ACM Comput. Graph. Interact. Tech. 3, 2, Article 20 (August 2020), 21 pages. https://doi.org/10.1145/
3406185

1 INTRODUCTION
The bounding volume hierarchy (BVH) structure has been a popular space partitioning method for
ray tracing. Yet, BVHs have inherent redundancies that inflate their storage cost. Considering that
data movement can quickly become a bottleneck for modern, highly-parallel architectures, particu-
larly for computing tasks like ray traversal, minimizing the storage overhead and data movement
required for space partitioning is an important step for improving ray tracing performance and
reducing its energy cost.
Recently, dual-split trees [Lin et al. 2019a] were introduced as a compact data structure that

can represent identical space partitioning as BVHs but with significantly reduced storage cost. A
dual-split tree can be quickly constructed from a given BVH, and its storage reduction was shown

Authors’ addresses: Daqi Lin, University of Utah; Elena Vasiou, University of Utah; Cem Yuksel, University of Utah; Daniel
Kopta, University of Utah; Erik Brunvand, University of Utah.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3406185.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

https://doi.org/10.1145/3406185
https://doi.org/10.1145/3406185
https://doi.org/10.1145/3406185
https://doi.org/10.1145/3406185

20:2 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

to provide faster software ray tracing performance on the CPU. Yet, the reported performance
improvement of dual-split trees has been relatively minor in comparison to the substantial reduction
they provide in storage. This ismainly because decoding dual-split tree nodes for extracting the space
partitioning information involves branching and various bit manipulation operations, resulting in
a considerable computation overhead for a software implementation.
In this paper, we introduce hardware acceleration for dual-split trees: specifically specialized

hardware logic for decoding dual-split tree nodes. Since the decoding operations mainly involve
branching and bit manipulation, they can be efficiently handled via hardware implementation,
overcoming the computation overhead of dual-split trees. To test the performance improvement of
our hardware decoder for dual-split trees, we provide results using a software path tracer running
on TRaX [Spjut et al. 2009], a well-studied highly-parallel architecture designed for ray tracing
that is supported by a detailed cycle-accurate simulator [Shkurko et al. 2018]. Our results show
that our hardware acceleration for dual-split trees can achieve up to 31% reduction in render time
and 38% energy saving as compared to using binary BVHs with hardware-accelerated ray-box
intersections. We also include comparisons to BVHs with higher arity, showing that hardware-
accelerated dual-split trees outperform all tested BVH variants in ray traversal performance, energy
use, and storage.

2 RELATEDWORK
Ray tracing in general is a memory bound task no matter what architecture is used, and that
memory bottleneck is often the large scenes encoded in an acceleration structure such as a BVH.

Therefore, reducing the memory footprint of scene traversal through the acceleration structure
is a crucial part of increasing ray tracing performance. There have been numerous proposals to
use specialized fixed-function hardware units for acceleration structure traversal [Kim et al. 2010a,
2012; Lee et al. 2013; Nah et al. 2014; Schmittler et al. 2002, 2004; Woop et al. 2006a, 2005]. While
these have been shown to be effective at accelerating traversal, largely through more efficient
memory access, they are still bound by the redundant encoding of the structures themselves, which
limits their effectiveness.

2.1 BVH Optimizations
A recent trend is to reduce the storage requirement by either increasing the branching factor of the
acceleration structure [Dammertz et al. 2008; Wald et al. 2008; Ylitie et al. 2017] or compressing
the planes [Keely 2014; Lier et al. 2018; Selgrad et al. 2016; Ylitie et al. 2017]. When the arity of
the tree increases, the number of intermediate nodes decreases and as a result fewer planes are
shared between children and parent. A wider node (4 or 8 children) is attractive to current CPU
or GPU architectures as computations on these wider nodes can benefit from SIMD computation.
However, using wider nodes might not be an optimal solution in all cases. While compressing the
planes either by directly or incrementally quantizing the bounding boxes can compress the storage
to an arbitrary percentage, quantizing the bounds results in less tight bounding boxes, leading
to more box and primitive intersections. In the case of incremental encoding, parent information
must be pushed to the traversal stack, increasing memory traffic. Another line of work attempts
to compress the pointer information in the nodes, by altering the tree structure to allocate fewer
bits for storing child node or primitive addresses [Benthin et al. 2018; Kim et al. 2010b; Liktor and
Vaidyanathan 2016].

2.2 Dual-Split Trees
Dual-split trees [Lin et al. 2019a] use a different way to remove the redundancy in a BVH. Instead
of storing bounding boxes, each internal node stores two axis-aligned planes, with the function of

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:3

(a) BVH node (b) splitting node (c) carving nodes

Fig. 1. Dual-split tree [Lin et al. 2019a] in 2D: (a) shows two configurations of a BVH node (child
bounding boxes are shown in gray); (b) creates a splitting node (split planes depicted in blue); (c) adds
carving nodes as children of the splitting node (carving planes depicted in orange). Each arrow indicates
the plane normal, with the empty space on the positive side of the plane.

splitting the space into two (potentially overlapping) half-spaces or carving out the empty space
in previously created half-spaces (Figure 1). As a result, they naturally avoid storing most shared
planes between parent and child nodes. Dual-split trees encode the bounding planes implicitly by
discarding the concept of the bounding box and using a hybrid of object and space partitioning
as some previous methods (BIH [Wächter and Keller 2006], H-Tree [Havran et al. 2006], B-KD
Tree [Woop et al. 2006b]), but have shown more memory footprint reduction and higher traversal
performance on the CPU [Lin et al. 2019a]. While compact BVH [Fabianowski and Dingliana 2009]
is an interesting alternative that also implicitly encodes the bounding planes, it generally requires
more ray-plane intersections than the aforementioned hybrid methods [Lin et al. 2019a]. As a result,
it potentially loads more data from memory despite having a size usually smaller than the hybrid
methods. It is important to notice that dual-split trees and other hybrid methods per-se are not
BVH compression methods as their definitions do not depend on hierarchical bounding boxes and
can be built independently. But they can act as a way to losslessly compress the information stored
in a BVH when converted from a BVH without changing the partitioning of objects and spaces.

Different from a kd tree that uses a single axis-aligned plane to split the child nodes of an internal
node, a dual-split tree stores two axis-aligned planes per node and the planes can align to either the
same or different axes. Each plane has a positive or negative 1D normal direction. The space along
the normal direction is considered as empty in dual-split trees. This allows dual-split trees to define
two types of internal nodes corresponding to two different ways of using the planes (Figure 1). In
a splitting node, the planes split space into two halfs and they are known as splitting planes. In a
carving node, the planes carve out empty space and they are called carving planes. Notice that the
benefit of splitting the space using two planes is that the half-spaces can be overlapping or leaving
a gap between them. While dual-split trees require the two splitting planes to align to the same axis,
the carving planes can align to either the same axis to create a single-axis carving node (Figure 1c)
or two different axes to create a dual-axis carving node (Figure 2). While a concept similar to the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:4 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

t1

t2
tmin

tmin

(a) tmin ≤ min(t1, t2)

t2

t1

(b) t1 ≤ t2

t1

t2

(c) t2 ≤ t1

t2

t1
tmax

tmax

(d) max(t1, t2) ≤ tmax

Fig. 2. Four configurations of carving planes (orange) in a dual-axis carving node [Lin et al. 2019a].
Subcaptions specify the conditions when a ray (black arrows) intersects the child within the node. These
tests are similar to intersecting against a 2D axis-aligned bounding box.

tmin

t2

t1

tmax

(a) tmin ≤ t1 ∩ tmax ≥ t2

tmin

t2

t1

tmax

(b) tmin > t1 ∩ tmax < t2

tmin

t2

t1

tmax

(c) tmin ≤ t1 ∩ tmax < t2

tmin

t2

t1

tmax

(d) tmin > t1 ∩ tmax ≥ t2

Fig. 3. Four cases in splitting node traversal [Lin et al. 2019a]. Subcaptions specify the conditions
when a ray (black arrows) intersects (a) both children, (b) neither child, (c) the closer child, and (d) the
farther child. When a ray intersects the empty space (b), traversal stops.

single-axis carving node is introduced in an augmented version of BIH [Wächter 2008], dual-split
trees introduce dual-axis carving nodes, which allows using fewer nodes to carve the empty spaces.
Figure 3 shows an illustration of splitting node traversal. The intersection distances with the

splitting planes that bound the near and far child nodes are denoted by t1 and t2, respectively.
Similar to traversing a kd tree, each ray keeps track of a valid ray depth range [tmin , tmax] and
updates this range according to the ray-splitting plane intersection distances with which the range
for the near child and the far child can be computed. When both children are intersected, the far
child is pushed to the traversal stack. Notice that, different from kd trees, dual-split tree traversal
continues after a hit is found (except for shadow rays), since the node bounds can overlap. In
addition, internal dual-split tree nodes can encode empty space between the two splitting planes.

For a carving node, the ray’s valid depth range is trimmed to the non-empty volume defined by
the carving planes. If after trimming tmin > tmax , the ray traverses the empty space and misses the
child of the node. A new node needs to be popped from the traversal stack just as in the case of
missing a BVH bounding box. For a single-axis carving node, the ray intersects with the child only
when both tmin ≤ t1 and tmax ≥ t2 are true. For a dual-axis carving node, there are four possible
combinations of plane normal directions, creating four different "corner" cases as shown in Figure 2.
The intersection resembles a 2D ray-box test, but with two bounds implicitly defined by the parent
bounding box.
With a combination of splitting nodes and carving nodes, dual split trees largely eliminate the

redundant storage of planes shared between parents and children, but additional meta-data need
to be stored to indicate the reference axis and function of the planes. For example, in a dual-axis
carving node, there are 3 different axes combination (xy, yz, xz) and 4 different "corner" types

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:5

Split

Single-axis Carve

Dual-axis Carve

1Leaf

ignored

0

plane axis left child size

1

plane axis

plane axes corner type

0

0

1

1

0

leaf

leaf

leaf

type

type

type

type

leaf

Fig. 4. Node headers in our implementation of the dual-split tree consist of six bits allocated differently
depending on the node type [Lin et al. 2019a].

defined by the combination of plane normal directions, summing up to 12 different types of dual-
axis carving nodes. While the information can be stored compactly in a 6-bit header [Lin et al.
2019a] (Figure 4), extracting the information and mapping it to different cases can be clumsy in
software. A naive implementation might check the node header against all combinations of bits
and use a switch statement to map it to different cases, which will be prohibitively expensive. A
smarter implementation might combine many cases together and use bit twiddling tricks to make
the code behave differently in different cases. Still, a software implementation needs to branch for
splitting and carving nodes. However, using a specialized hardware pipeline decoding can be largely
simplified and branching can be completely eliminated, which makes hardware implementation a
very promising attempt to reduce the cost of dual-split tree traversal.

2.3 Ray Tracing Hardware
In the domain of custom hardware, there have been a variety of projects over the years that
attempt to capture the intricacies of ray tracing and to exploit its inherent parallelism. In particular,
many of these custom hardware systems have focused on single instruction multiple data (SIMD)
parallelism similar to rasterizing GPUs [Schmittler et al. 2002, 2004; Woop et al. 2006a, 2005]. Other
approaches such as StreamRay [Gribble and Ramani 2008; Ramani and Gribble 2009] provided
a pre-filter operation to filter rays into SIMD-friendly groups for processing. These filtered sets
of rays look like streams once they are assembled, but are not predictable in advance to allow
for effective prefetching. With some additional overhead, SPMD architectures have been studied
to take advantage of the parallel nature of ray tracing processing [Govindaraju et al. 2008; Kelm
et al. 2009; Kopta et al. 2013, 2015, 2010; Shkurko et al. 2017; Spjut et al. 2009, 2008; Vasiou et al.
2019]. These systems assume a fairly standard cache/DRAM hardware architecture and rely on the
behavior of the ray and scene data requests to leverage the memory system efficiently.

We use the previously developed TRaX architecture [Spjut et al. 2009] as the hardware ray tracing
foundation for our tests. This architecture is in many ways the most generic of hardware ray tracing
architectures as it does not utilize any fixed function rendering pipelines or other specialized logic
units. The path tracing algorithm used in our tests is written in C++ without assuming any special
purpose support, other than the hardware acceleration we are proposing.
The basic TRaX architecture, shown in Figure 5, consists of a large set of parallel computation

resources that each have their own program counter. They operate based on a Single Program
Multiple Data (SPMD) approach where all the parallel processing elements are running the same

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:6 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

TM

I Cache

L1 Data Cache

Shared Execution Units

I Cache

Thread Processors

L2

TMs

TMs

TMs

TMs

TMs

TMs

Chip

Fig. 5. An overview of the TRaX architecture [Spjut et al. 2009].

program (e.g. path tracing), but can be at different points in the program. This allows the processors
to effectively share multi-banked cache and execution unit resources.
The fundamental unit of a TRaX-style architecture is a Thread Processor (TP). This is a small

single-threaded single-issue processor that has its own program counter, register file, and basic
datapath functional units (integer ALU, floating point add/sub/mult). These TPs are collected
into a Thread Multiprocessor (TM) where multiple TPs share multi-banked L1 caches and more
complex execution units. At the TM level, the shared execution units can be individual units such
as square root or inverse, and can also be collected into multi-stage pipelines to efficiently compute
application-specific operations such as ray-box or ray-triangle intersection [Kopta et al. 2013].
This run-time configuration of a computation pipeline is what we leverage to accelerate dual-split
trees. TMs are collected together onto a chip and share multi-banked L2 caches that are backed
by multiple DRAM channels. All of the specific parameters such as number of TPs in a TM, size
and number of banks in caches, allocation of execution units, number of TMs on a chip, etc. are
configurable and may change depending on the demands of a specific application.

TRaX is evaluated on a cycle-accurate simulator [Shkurko et al. 2018] that supports many thou-
sands of processing elements working together in SPMD mode, and allows easy exploration of the
effects of our proposed additional hardware. Because of the general nature of the TRaX architecture,
and the completely software-controlled ray tracing used for evaluation, we are confident that we
are reporting gains due to the dual-split tree acceleration that will be realizable across a wide
variety of other types of hardware architectures for ray tracing.

Another domain of study in ray tracing hardware focuses on hardware acceleration structure
builders. Hardware-accelerated kd tree builders have been proposed to reduce the kd tree construc-
tion cost with binned SAH or Morton code sorting [Liu et al. 2015; Nah et al. 2014]. Hardware
BVH builders received more attention, since construction and update of BVHs are faster than kd
trees. One example is the hardware microarchitecture for building binned SAH BVHs [Doyle et al.
2013, 2017]. More recently, hardware BVH builders including MergeTree [Viitanen et al. 2017] and
PLOCTree [Viitanen et al. 2018] have taken advantage of Morton code sorting to substantially
improve the hardware construction speed.
A given BVH can be quickly converted to a dual-split tree. An unoptimized software dual-split

tree converter has been shown to take 38%-57% of the construction time of a highly optimized

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:7

software BVH builder [Lin et al. 2019a]. It is certainly possible to directly construct a dual-split tree
without first building a BVH. In this paper, we concentrate on the ray traversal problem and leave
hardware-accelerated dual-split tree construction to future work.

3 HARDWARE DUAL-SPLIT INTERSECTION PIPELINE
Dual-split trees [Lin et al. 2019a] substantially reduce the number of ray-plane intersections and
the acceleration structure size compared to traditional BVHs. However, the performance gain is
limited by a significantly more complex traversal kernel (see the supplemental document of Lin
et al. [2019b]). First, decoding the node information, including node type and splitting/carving
axis, requires many bit operations which add a non-trivial computational cost that undermines
performance. Secondly, the large number of control branches for different node types and intersec-
tion conditions further affects performance, especially on general purpose GPU kernels. However,
decoding and branching, while expensive in a software implementation, can be elegantly mapped to
hardware with the cost largely eliminated. Therefore, we propose a hardware dual-split intersection
pipeline that solves this key part of the dual-split tree traversal.
For the proposed hardware pipeline, we assume the node structure and tree layout proposed

in Lin et al. [2019a]. A dual-split tree node starts with a packed word that we call header-offset,
consisting of a 6-bit header (Figure 4) and 26-bit integer offset. The integer offset points to the left
child in memory. The address of the right child is simply the left child address plus the left child
size, since the tree is stored linearly in memory in a depth-first order with two child nodes always
stored next to each other. If the node is an internal node, it has two other words that store either
two splitting planes or carving planes as single-precision floats. Given a header-offset and two
planes, and current ray information specified by ray invdir (the inverse of direction), ray origin,
tmin , tmax (valid range of the ray), the pipeline can be seen as a black box that updates the ray
information and produces the next step of the traversal. The next step is indicated by a 2-bit return
value, with 0 being no intersection where the traversal stack is to be popped, 1 being single child
intersection, 2 being intersecting both children, 3 being returning as a leaf node. This return code
tells the program to change its control flow. When child intersection happens, the relative address
of the child is returned as offset (next node to traverse) or offsetstack (child node to be pushed to the
stack), which is used to fetch the node for the next or later dual-split intersection. For a leaf node
the offset points to the beginning of a range of its triangles in the global triangle index list (the last
triangle index has the sign bit marked with 1).
An overview of the pipeline is provided in Figure 6 which shows the input/output and the

data flow. As can be seen, dual-split intersection pipeline has 2 floating-point addition/subtraction
(FPADD) and 2 floating-point multiplication (FPMUL) units, which are used for ray-plane inter-
section. Beyond that, there is just a little additional complexity for choosing the inputs for the
ray-plane intersection and computing the new states (ray range, offset, return value) for traversal.
The details about these parts (ray component and plane selection logic, plane comparison and return
value logic, and offset computation logic) are in the appendix for the interested readers (Appendix A,
B, and C). Note that compared to the floating point units, the latency, area, and power consumption
of these additional logic blocks are relatively small. In comparison, a hardware ray-box intersection
pipeline [Kopta 2016] with the same latency as the proposed dual-split intersection pipeline needs
6 FPADD and 6 FPMUL units, which costs substantially more area and energy (Table 2).
Notice that the hardware dual-split intersection pipeline completely eliminates the branching

cost to test a ray with dual-split nodes since all the node types are treated uniformly, by taking
advantage of the fact that all internal node types share the same intersection query between the ray
and two planes, which only differs in which ray/plane components to choose and how to interpret
the results. By merging the shared logic path using combinational logic, parallelizing the different

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:8 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

tmax
(float)

ray origin
(float3)

ray invdir
(float3)

header-offset
(int)

plane1
(float)

plane2
(float)

FPMUL
(pipelined 2

cycles)

FPADD
(pipelined 2

cycles)

FPADD
(pipelined 2

cycles)

FPMUL
(pipelined 2

cycles)

return value
(2 bits)

offsetstack offset
(int)

plane comparison logic

offset computation logic Return value logic

t1 t2

header

header

header

comparison
 flags

ray sign

offset

dual-axis
corner
type

ray component and plane selection logic

tout
min tout

max

tmin
(float)

(int) (float) (float)

Fig. 6. An overview of the hardware dual-split intersection pipeline. The FPADD units are used for
subtractions. Arrows represent 32-bit data type (int, float) by default. Vector data (e.g. float3) are
marked with thickened lines. Data under 2 bits are represented by dashed lines. Colored round boxes
represent input registers. Uncolored round boxes represent outputs. Squared boxes stand for functional
units. Unit areas are not to scale.

logic paths (e.g. extracting corner type in dual-axis carving nodes), and choosing the result using
multiplexers, we can use a single hardware pipeline for all node types, instead of using multiple
hardware pipelines that are specific to node types or using software node testing, both of which
require branching.

4 IMPLEMENTATION AND RESULTS
We choose TRaX [Spjut et al. 2009], a highly parallel and general MIMD architecture for high-
performance ray tracing (described in Section 2.3), and the SimTRaX simulator [Shkurko et al. 2018]
to simulate and evaluate our method, which includes a detailed DRAM model for accurate memory
simulation [Chatterjee et al. 2012]. The general TRaX architecture permits many variations in terms
of the basic configuration of computation and memory resources. The configuration used for this
study is shown in Table 1. The simulated chip has a single large L2 cache of 4MB size and 128 banks
to improve cache sharing. We connect 64 TMs to this L2 cache. Each TM consists of 32 TPs for a
total of 2048 thread processing cores, has one L1 data cache sized at 64KB with 16 banks, and two
instruction caches. We estimate the energy of the on-chip caches using Cacti 7 [Balasubramonian

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:9

Table 1. Configuration of the simulated TRaX chip.

Common System Parameters
Technology Node 65nm CMOS

Clock Rate 1GHz
DRAM Memory 2GB GDDR5
Total Threads 2048

On-Chip Memory
L2 Cache 4MB, 128 banks

Number of L2s 1
TMs / L2 64

TM Configuration
TPs / TM 32
L1 Cache 64KB, 16 banks

et al. 2017]. The main memory of the system is simulated as GDDR5 DRAM with 16 32-bit channels,
with a 512 GB/s maximum bandwidth and an effective clock rate of 8 GHz.

On the same architecture, we compare the ray tracing performance of our hardware-accelerated
dual-split trees (DST) to bounding volume hierarchies with branching factors of two, four, and eight.
We refer to them as BVH2, BVH4, and BVH8 in the following text. They use a single hardware-
accelerated ray-box intersection pipeline [Kopta et al. 2013] which accepts a ray and an AABB,
and outputs the hit result (true/false) and hit distance (for sorting the child nodes and detecting
early termination). There is one ray-box pipeline per TM, so ray-box intersection tests are executed
serially for each box in a BVH node. Similarly, we use a single dual-split pipeline per TM.

To experiment with reduced ray-box computational overhead, we also include tests with extended
ray-box intersection pipelines that allow testing all boxes in a BVH node in parallel. Obviously,
these extended pipelines have significantly more area and energy costs (by a factor of BVH arity)
and the numbers of required units per TM are increased accordingly. Thus, these extended pipelines
pack significantly more compute units. These BVHs with extended parallel ray-box pipelines are
referred to as BVH2+, BVH4+, and BVH8+ in the following text.
In addition, we compare to a dual-split tree with software decoding (DST*) to demonstrate the

improvement when using hardware acceleration.

4.1 Hardware Pipeline Energy and Area Cost
The functional units which make up the pipelines are synthesized by Synopsys Design Compiler
using a 65nm CMOS library, which allows us to calculate the area and energy used by each pipeline.
The shared execution units using these functional units are configurable and can be used as individ-
ual functional units, or configured in a multi-stage pipeline to execute ray-box, ray-triangle [Kopta
et al. 2013], or dual-split intersection. The overhead is low for these reconfigurable pipelines be-
cause existing functional units are temporarily reconfigured at run time using a combination of
multiplexers and latches that already exist in the shared execution unit.
For the dual-split intersection pipeline additional logic gates are added to enable the required

combinational bit operations required for this intersection (see Appendix A, B, and C for details).
Because these are simple bit operations, this adds negligible overhead to the chip area. As Table 2
shows, the dual-split pipeline uses 61% less area than the box pipeline and consumes 56% less energy
per access, while having the same latency in terms of clock cycles, assuming a 1GHz processor.
A dual-split pipeline uses more bitwise units, latches, multiplexers than the box pipeline, but it
requires fewer floating point arithmetic units which take up the majority of area and energy. In

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:10 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

Table 2. Unit comparison between the hardware ray-box pipeline [Kopta 2016] and dual-split pipeline.

Ray-box Dual-split
Integer Adder (INTADD) – 1 unit
Floating-point Adder (FPADD) 6 units 2 units
Floating-point Multiplier (FPMUL) 6 units 2 units
Floating-point Min/Max (FPMIN/MAX) 12 units 3 units
Floating-point Comparison (FPCMP) 2 units 4 units

Total Area 0.1278 mm2 0.0498 mm2

Energy per Operation 0.1377 nJ 0.0610 nJ
Latency 8 cycles 8 cycles

particular, the number of both floating point addition/subtraction (FPADD) and floating point
multiplication (FPMUL) units are reduced from six to two.
Note that, while a single dual-split pipeline has significantly less energy and area cost than a

single ray-box pipeline, our tests with BVH2+, BVH4+, and BVH8+ have energy and area costs
of 2×, 4×, and 8× of single ray-box pipeline, respectively. Though, most of the energy cost in our
tests stem from data movement and compute energy accounts for a relatively small percentage, the
additional area costs for these extended pipelines are significant.

4.2 Acceleration Structure Construction
All acceleration structures being compared are converted from the same original binary BVH built
using the Embree 3 BVH builder [Wald et al. 2014] with high quality settings and without triangle
splitting. Thus, all acceleration structures present identical spatial partitioning. The binary BVH
(BVH2) is used as our baseline in the results. The BVH4 is built by collapsing the binary BVH
using the classical method of removing all odd levels [Dammertz et al. 2008]. For the BVH8, to
avoid generating excessive empty children, we use the heuristic developed by Ylitie et al. [2017] to
adaptively collapse the BVH2 to minimize tree size as well as reduce the traversal cost.

For the dual-split tree, we use the SAH-based converter described in Lin et al. [2019a], but adjust
the cost of carving node intersection relative to triangle intersection. In the original CPU version
of dual-split tree, the dual-axis carving node has a higher cost than the single-axis carving node.
However, in our hardware-accelerated dual-split tree, all node types have the same cost since the
latency of the dual-split intersection test does not depend on the node type. We build the dual-split
tree using identical bounds as the source BVH, i.e., empty space is always carved before creating a
splitting node.
For all acceleration structures, the tree is stored in linear depth-first order with child nodes

belonging to the same parent always stored consecutively. An internal node of the BVH2 consists
of two child bounding boxes stored using 12 single-precision floats, and a 4-byte child offset,
with the child node types (leaf or internal) stored as the highest two bits sharing the same word
the child offset, making each internal node 52 bytes long. We find this layout generally provides
better performance than other layouts that store the same information in the chosen hardware
architecture. A similar node layout is used for BVH4, which stores four child bounding boxes that
use 24 floats and one word with packed offset and child node type, summing up to 100 bytes per
node. For BVH8, the child node types are stored in an additional word since it will not leave enough
space for the child offset if packed together. As a result, each BVH8 node has 200 bytes (192 bytes
for child bounding boxes, 4 bytes for offset, and 4 bytes for node types). BVH4 and BVH8 nodes
store degenerate bounding boxes for empty children.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:11

Table 3. Acceleration structure sizes for our test scenes. BVH2 is used as the baseline (100%).

Crytek Sponza Dragon Box Vegetation Hairball Dragon Sponza San Miguel
262K triangles 870K triangles 1.1M triangles 2.9M triangles 6.6M triangles 10.5M triangles

Acceleration Structure Size (MiB)
BVH2 7.03MiB 100% 25.71MiB 100% 22.74MiB 100% 43.82MiB 100% 181.61MiB 100% 265.90MiB 100%
BVH4 6.80MiB 97% 24.77MiB 96% 21.90MiB 96% 42.24MiB 96% 175.17MiB 96% 256.33MiB 96%
BVH8 5.64MiB 80% 21.42MiB 83% 19.33MiB 85% 35.77MiB 82% 150.53MiB 83% 212.90MiB 80%
DST 4.55MiB 65% 15.35MiB 60% 15.81MiB 70% 28.91MiB 66% 111.65MiB 61% 175.01MiB 66%

We test six different scenes with different levels of complexity listed in Table 3. The sizes of
acceleration structures in different scenes are listed in the table. Notice that dual-split trees form
by far the smallest acceleration structures for all scenes.

4.3 Ray Casting and Shadow Rays
We present performance results using ray casting and direct illumination with shadow rays in
Table 4 in terms of render time, energy consumption, and number of cache lines transferred from
memory. These render times and energy values are also visualized in Figure 7. Each generated
frame is rendered at 1024×1024 resolution with one sample per pixel.

BVH2
BVH2+

BVH4
BVH4+
BVH8
BVH8+

DST*
DST

0

5

10

15

0

1

2

Fr
am

e
Ti

m
e

(m
s)

En
er

gy
 (J

)

Crytek Sponza Dragon Box Vegetation Hairball Dragon Sponza San Miguel

Crytek Sponza Dragon Box Vegetation Hairball Dragon Sponza San Miguel

Fig. 7. Ray casting and shadow rays performance: (top) render times and (bottom) energy use.

Notice that hardware-accelerated dual-split trees consistently perform faster than BVH2, BVH4,
and BVH8. Our hardware-accelerated dual-split trees reach render time reductions up to 25%, but
this reduction can be as modest as 2% in some scenes. The only configuration that could perform
faster rendering in some scenes (Dragon Box, Hairball, and San Miguel) is BVH2+, which uses two
parallel ray-box intersections. Note that each TM in our BVH2+ tests needs 6 times the floating
point adders and multipliers, as compared to the ones used for hardware-accelerated dual-split trees.
Still, BVH2+ trails behind hardware-accelerated dual-split tree in other scenes (Crytek Sponza,
Vegetation, and Dragon Sponza).

Software implementation of dual-split trees (DST*), however, consistently perform slower than
BVH2. We have observed up to 43% increase in render time with software dual-split trees, as

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:12 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

Table 4. Ray casting and shadow rays (1 primary ray and 1 shadow ray per pixel) performance.

Crytek Sponza Dragon Box Vegetation Hairball Dragon Sponza San Miguel
262K triangles 870K triangles 1.1M triangles 2.9M triangles 6.6M triangles 10.5M triangles

Frame Time (milliseconds)
BVH2 5.72 ms 100% 2.91 ms 100% 9.90 ms 100% 6.69 ms 100% 3.85 ms 100% 6.05 ms 100%
BVH2+ 5.06 ms 89% 2.59 ms 89% 8.98 ms 91% 6.46 ms 97% 3.43 ms 89% 5.39 ms 89%
BVH4 6.28 ms 110% 3.52 ms 121% 11.37 ms 115% 7.26 ms 109% 4.39 ms 114% 7.18 ms 119%
BVH4+ 5.23 ms 91% 2.95 ms 102% 9.64 ms 97% 6.67 ms 100% 3.67 ms 95% 6.00 ms 99%
BVH8 7.56 ms 132% 4.11 ms 141% 15.53 ms 157% 9.14 ms 137% 5.74 ms 149% 10.06 ms 166%
BVH8+ 6.15 ms 108% 3.39 ms 117% 12.73 ms 129% 7.83 ms 117% 4.68 ms 122% 8.18 ms 135%
DST* 6.43 ms 113% 3.80 ms 131% 13.07 ms 132% 8.13 ms 122% 4.62 ms 120% 8.63 ms 143%
DST 4.27 ms 75% 2.62 ms 90% 8.81 ms 89% 6.52 ms 98% 3.08 ms 80% 5.74 ms 95%

Energy Consumption (J)
BVH2 1.04 J 100% 0.54 J 100% 2.06 J 100% 1.45 J 100% 0.74 J 100% 1.19 J 100%
BVH2+ 1.00 J 96% 0.52 J 96% 1.99 J 97% 1.43 J 99% 0.71 J 96% 1.14 J 96%
BVH4 1.02 J 98% 0.59 J 109% 2.08 J 101% 1.43 J 99% 0.74 J 100% 1.25 J 105%
BVH4+ 0.94 J 90% 0.55 J 102% 1.96 J 95% 1.37 J 94% 0.69 J 93% 1.16 J 97%
BVH8 1.16 J 112% 0.66 J 122% 2.63 J 128% 1.73 J 119% 0.91 J 123% 1.62 J 136%
BVH8+ 1.06 J 102% 0.60 J 111% 2.42 J 117% 1.62 J 112% 0.83 J 112% 1.48 J 124%
DST* 0.86 J 82% 0.53 J 99% 1.97 J 96% 1.35 J 93% 0.64 J 86% 1.23 J 103%
DST 0.62 J 59% 0.40 J 75% 1.48 J 72% 1.12 J 77% 0.47 J 63% 0.90 J 76%

(Millions) Lines Transferred From Memory
BVH2 2.18M 100% 2.12M 100% 5.07M 100% 6.91M 100% 2.81M 100% 3.48M 100%
BVH2+ 2.16M 99% 2.05M 97% 5.09M 100% 6.99M 101% 2.77M 99% 3.43M 99%
BVH4 2.14M 98% 2.19M 103% 4.63M 91% 5.91M 86% 2.75M 98% 3.40M 98%
BVH4+ 2.08M 95% 2.10M 99% 4.61M 91% 6.00M 87% 2.67M 95% 3.32M 95%
BVH8 2.21M 101% 2.33M 110% 4.47M 88% 6.83M 99% 2.85M 101% 3.68M 106%
BVH8+ 2.17M 100% 2.25M 106% 4.48M 88% 6.97M 101% 2.79M 99% 3.64M 105%
DST* 2.10M 96% 2.33M 110% 4.03M 79% 5.04M 73% 2.45M 87% 3.32M 95%
DST 1.93M 89% 2.08M 98% 3.93M 78% 5.11M 74% 2.22M 79% 3.11M 89%

+ BVH with extended parallel ray-box pipelines
∗ Dual-split tree with software decoding

compared to BVH2. This shows the substantial impact of hardware acceleration for processing
dual-split tree nodes.
In terms of energy consumption, hardware-accelerated dual-split trees provide unmatched

performance, achieving 24% to 41% reduction, as compared to BVH2. The performance of hardware
acceleration for dual-split trees also improves the cache performance and leads to memory traffic
reduction, as compared to its software implementation.

4.4 Path Tracing
Path tracing with 5 bounces (without Russian Roulette) produces highly incoherent rays to stress
the acceleration structure. We report our path tracing simulation results in Table 5 and Figure 8. In
this case, we see a 21% to 31% reduction in render time with our hardware-accelerated dual-split
trees over the baseline BVH2 across all test scenes. Our hardware-accelerated dual-split trees
perform consistently faster than all other acceleration structures we tested, including ones that
pack significantly more compute power with extended parallel ray-box pipelines.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:13

BVH2
BVH2+

BVH4
BVH4+
BVH8
BVH8+

DST*
DST

0

25

50

75

Fr
am

e
Ti

m
e

(m
s)

0

5

10

En
er

gy
 (J

)

Crytek Sponza Dragon Box Vegetation Hairball Dragon Sponza San Miguel

Crytek Sponza Dragon Box Vegetation Hairball Dragon Sponza San Miguel

Fig. 8. Path tracing performance: (top) render times and (bottom) energy use.

Notice that the speedup of dual-split trees becomes more substantial when more memory needs
to be transferred to the chip, which roughly grows with scene size. In San Miguel, our largest test
scene, our method has a 28% reduction in render time over BVH2, while in the smallest scene,
Crytek Sponza, the saving is only 21%. On the other hand, dual-split trees have better memory
saving in both tree size and traversal memory traffic for scenes with more regular geometry (e.g.
Crytek Sponza and Dragon Sponza, where a large number of objects are axis-aligned), because less
carving nodes are generated [Lin et al. 2019a]. The hardware dual-split tree achieves the highest
speedup of 1.46× in Dragon Sponza, which has the second highest triangle count and second
highest tree size reduction ratio compared to BVH2 (Table 3).

Hardware-accelerated dual-split trees also reduce the energy consumption by 26%-38%, far better
than the other acceleration structures. Software dual-split trees provide the second best performance
in terms of energy consumption by a clear margin. These can be attributed to the fact that dual-split
trees form significantly smaller acceleration structures. The improved computation speed provided
by the hardware dual-split tree decoding also results in reduced energy consumption, as compared
to software dual-split trees (DST*).
This suggests that the efficiency of our method is mainly correlated to the reduced memory

traffic. Overall, our method reduces 29%-49% of the memory traffic of the baseline, measured in
number of cache lines transferred from DRAM. However, without the hardware acceleration, the
compute cost can limit the amount of speedup our method can achieve, as shown by the results of
software-decoded dual-split tree. In high depth complexity scenes like San Miguel, the performance
of dual-split trees is less effected by using a software decoder. However, in the other scenes (Crytek
Sponza, Dragon Box, and Dragon Sponza), software-decoded dual-split trees are about 30% slower
than hardware-decoded dual-split trees. In Crytek Sponza and Dragon Box, software-decoded dual
split trees are even slower than BVH2. The reason is that computation time takes up a significant
portion of the overall execution time, and the saving in memory cost is not substantial enough to
offset that additional cost. Further, a software-decoded dual-split tree uses 12% to 32% more energy
than hardware dual split trees, most of which is due to on-chip memory energy spent on fetching
from instruction caches and register files during software decoding. Interestingly, compute energy
itself does not differ much from hardware dual-split trees (Table 6). This is understandable since
the hardware pipeline can utilize the same amount of functional units as in the case of software
testing, despite consuming much less latency.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:14 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

Table 5. Path tracing (with 5 diffuse bounces) performance.

Crytek Sponza Dragon Box Vegetation Hairball Dragon Sponza San Miguel
262K triangles 870K triangles 1.1M triangles 2.9M triangles 6.6M triangles 10.5M triangles

Frame Time (milliseconds)
BVH2 24.1 ms 100% 15.3 ms 100% 37.1 ms 100% 29.8 ms 100% 21.3 ms 100% 77.0 ms 100%
BVH2+ 21.4 ms 89% 15.5 ms 101% 37.3 ms 101% 29.9 ms 100% 20.7 ms 98% 77.8 ms 101%
BVH4 27.8 ms 115% 15.9 ms 104% 34.3 ms 92% 27.6 ms 92% 21.7 ms 102% 67.0 ms 87%
BVH4+ 23.1 ms 96% 13.5 ms 88% 31.8 ms 86% 25.9 ms 87% 18.9 ms 89% 65.9 ms 86%
BVH8 34.1 ms 141% 17.7 ms 116% 39.5 ms 107% 29.8 ms 100% 26.5 ms 125% 62.9 ms 82%
BVH8+ 27.6 ms 115% 14.4 ms 94% 32.2 ms 87% 25.7 ms 86% 21.5 ms 101% 60.8 ms 79%
DST* 28.8 ms 119% 16.7 ms 109% 33.7 ms 91% 24.9 ms 83% 21.0 ms 99% 55.7 ms 72%
DST 19.0 ms 79% 11.8 ms 77% 27.5 ms 74% 22.4 ms 75% 14.6 ms 69% 55.6 ms 72%

Energy Consumption (J)
BVH2 5.41 J 100% 3.78 J 100% 9.12 J 100% 6.97 J 100% 4.90 J 100% 13.46 J 100%
BVH2+ 5.23 J 97% 3.73 J 99% 9.01 J 99% 6.90 J 99% 4.78 J 98% 13.29 J 99%
BVH4 5.34 J 99% 3.73 J 99% 8.61 J 94% 6.64 J 95% 4.66 J 95% 12.61 J 94%
BVH4+ 5.00 J 92% 3.50 J 93% 8.13 J 89% 6.36 J 91% 4.36 J 89% 11.77 J 87%
BVH8 5.98 J 111% 3.87 J 102% 9.52 J 104% 7.35 J 105% 5.19 J 106% 12.97 J 96%
BVH8+ 5.49 J 101% 3.46 J 92% 8.58 J 94% 6.72 J 96% 4.69 J 96% 11.46 J 85%
DST* 4.44 J 82% 3.18 J 84% 7.61 J 83% 5.79 J 83% 3.79 J 77% 10.47 J 78%
DST 3.37 J 62% 2.65 J 70% 6.60 J 72% 5.15 J 74% 3.06 J 62% 8.95 J 66%

(Millions) Lines Transferred From Memory
BVH2 24.7M 100% 32.9M 100% 86.2M 100% 76.4M 100% 36.3M 100% 143.3M 100%
BVH2+ 24.7M 100% 32.9M 100% 86.1M 100% 76.0M 99% 36.2M 100% 143.0M 100%
BVH4 20.1M 81% 27.7M 84% 71.8M 83% 66.8M 87% 28.7M 79% 117.7M 82%
BVH4+ 20.0M 81% 27.6M 84% 71.5M 83% 66.7M 87% 28.5M 79% 116.8M 82%
BVH8 19.2M 78% 27.5M 84% 72.5M 84% 71.7M 94% 27.7M 76% 114.3M 80%
BVH8+ 19.1M 77% 27.5M 84% 72.7M 84% 72.0M 94% 27.7M 76% 113.6M 79%
DST* 15.4M 62% 22.9M 70% 60.2M 70% 54.7M 72% 22.7M 63% 92.1M 64%
DST 15.2M 61% 22.8M 69% 60.1M 70% 54.3M 71% 22.5M 62% 89.6M 63%

+ BVH with extended parallel ray-box pipelines
∗ Dual-split tree with software decoding

A breakdown of energy consumption is provided in Table 6. Notice that the overall energy
consumption comes mainly from DRAM and caches. Both versions of dual-split trees reduce all
three types of energy as compared to different kinds of BVH.

Similar to dual-split trees, the speedup of BVH4 and BVH8 grows with the scene complexity. By
skipping levels, wider BVHs reduce the acceleration size and memory traffic during traversal. On the
other hand, wider BVHs generally have more computational cost, due to more ray-box intersection
tests and additional operations for child node ordering. As shown in Table 5, when the scene
has low complexity, the memory savings of BVH4 and BVH8 might not outweigh the additional
computational costs. Using parallelized ray-box pipelines helps reduce the computational cost of
BVH4 and BVH8, which can lead to significant performance improvement (up to 1.23× speedup
for BVH8 and up to 1.20× speedup for BVH4 in path tracing task). But when the scene becomes
large and complex, the benefit of parallelized ray-box intersections diminishes. For example, in the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:15

Table 6. Path tracing energy consumption breakdown.

Crytek Sponza Hairball
DRAM Caches Compute DRAM Caches Compute

BVH2 1.55 J 3.70 J 0.16 J 4.19 J 2.68 J 0.11 J
BVH2+ 1.49 J 3.58 J 0.16 J 4.17 J 2.62 J 0.11 J
BVH4 1.49 J 3.69 J 0.16 J 3.84 J 2.68 J 0.11 J
BVH4+ 1.35 J 3.48 J 0.16 J 3.66 J 2.58 J 0.11 J
BVH8 1.58 J 4.23 J 0.17 J 3.99 J 3.23 J 0.13 J
BVH8+ 1.37 J 3.95 J 0.17 J 3.51 J 3.07 J 0.13 J
DST* 1.32 J 3.03 J 0.09 J 3.18 J 2.53 J 0.08 J
DST 1.06 J 2.22 J 0.09 J 3.05 J 2.01 J 0.08 J

+ BVH with extended parallel ray-box pipelines
∗ Dual-split tree with software decoding

largest scene, San Miguel, the path tracing results only see 1.02× and 1.03× speedup for BVH4+
and BVH8+ over their counterparts with non-parallelized ray-box intersections.
Hardware-accelerated dual-split trees, on the other hand, consistently provide faster render

times with significantly less compute units per TM, such as 6×, 12×, and 24× fewer floating point
adders and multipliers, as compared to BVH2+, BVH4+, and BVH8+, respectively.

4.5 Parameter Exploration
To see how the performance of different acceleration structures scales with the number of multi-
processors, we experiment with varying the number of TMs connected to the L2 cache. Table 7
shows render times of different acceleration structures in the 32, 64 (default), and 128 TM settings.
The reported speedup values of the 64 and 128 TM settings are measured relative to the 32 TM
setting. Figure 9 shows the frames per second (FPS) for the same tests.

32 64 128
Number of TMs

20

40

60

80

100

FP
S

Frames per Second, Crytek Sponza

BVH2
BVH2+

BVH4
BVH4+

BVH8
BVH8+

DST*
DST

32 64 128
Number of TMs

20

30

40

50

FP
S

Frames per Second, Hairball

BVH2
BVH2+

BVH4
BVH4+

BVH8
BVH8+

DST*
DST

Fig. 9. Line charts showing frames per second of different acceleration structures in path tracing as
the function of number of TMs in Crytek Sponza and Hairball.

In the Crytek Sponza scene, the smallest scene in our tests, all acceleration structures achieve
a similar speedup with increasing TM count and the FPS of all acceleration structures increases
linearly with the number of TMs. For the hairball scene however, the performance of different accel-
eration structures plateaus at different speeds. Notably, for the baseline BVH2 the FPS marginally
increases with the number of TMs, which is due to intense resource conflicts during memory load
instructions. The fact that the frame rate of the dual split trees continues to grow with the number
of TMs indicates that dual split trees are less memory and more compute bound in the architecture
being tested.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:16 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

Table 7. Relationship between frame time (milliseconds) and number of TMs in path tracing.

Crytek Sponza Hairball
32 TM 64 TM 128 TM 32 TM 64 TM 128 TM
Time Time speedup Time speedup Time Time speedup Time speedup

BVH2 48.0 ms 24.1 ms 1.99× 12.3 ms 3.92× 38.4 ms 29.8 ms 1.28× 28.2 ms 1.36×
BVH2+ 42.7 ms 21.4 ms 1.99× 11.0 ms 3.87× 37.5 ms 29.9 ms 1.25× 28.3 ms 1.32×
BVH4 55.4 ms 27.8 ms 1.99× 14.0 ms 3.97× 40.5 ms 27.6 ms 1.47× 25.1 ms 1.61×
BVH4+ 46.0 ms 23.1 ms 1.99× 11.6 ms 3.95× 37.6 ms 25.9 ms 1.45× 24.0 ms 1.57×
BVH8 67.9 ms 34.1 ms 1.99× 17.1 ms 3.97× 49.3 ms 29.8 ms 1.65× 25.6 ms 1.93×
BVH8+ 55.1 ms 27.6 ms 2.00× 13.9 ms 3.97× 42.4 ms 25.7 ms 1.65× 23.2 ms 1.82×
DST* 57.4 ms 28.8 ms 2.00× 14.4 ms 3.97× 43.8 ms 24.9 ms 1.76× 21.1 ms 2.07×
DST 37.9 ms 19.0 ms 1.99× 9.6 ms 3.96× 36.6 ms 22.4 ms 1.63× 20.4 ms 1.79×

+ BVH with extended parallel ray-box pipelines
∗ Dual-split tree with software decoding

When the scene is dominated by memory cost, as is in the case of Hairball, a considerable
portion of threads wait for memory reads at any given time, limiting the number of threads that can
successfully issue instructions per cycle (i.e. avoid stalls). As a result, acceleration structures that
are less memory bound (such as dual-split trees and BVH8) can use the computational resources
more effectively.

5 DISCUSSIONS AND FUTUREWORK
Dual-split trees provide an attractive alternative to wider BVHs for reducing the storage of binary
BVHs as the structure uses less memory and compute as demonstrated in our results. Yet, dual-split
trees might benefit less from lossy compression as wider BVHs [Ylitie et al. 2017], due to the fact
that plane information has a relatively small portion in the node structure. A possible solution is to
collapse the tree levels as suggested in Lin et al. [2019a] to reduce the number of nodes. This is at
the expense of potentially reading in more planes than necessary as in the case of high arity BVHs.
Nevertheless, unquantized dual-split trees show much higher performance than unquantized BVHs
when implemented with hardware acceleration. Thus, it is reasonable to speculate that quantized
dual-split trees with collapsed levels would be at least faster than quantized and collapsed wide
BVHs on the same hardware. Future work can find out whether quantization of dual-split trees
with collapsed levels provides the same amount of speedup for dual split trees as compared with
the case for BVHs.

We have observed that dual-split trees are 1.27 - 1.46 × faster than binary BVHs using TRaX as
a generic parallel architecture. This is more significant than the findings on software-only CPU
implementation [Lin et al. 2019a], where dual-split trees have on average 1.17× speedup over binary
BVHs.
While the proposed specialized hardware pipeline substantially reduces the cost of using a

dual-split tree, another important factor is that the memory behavior of the tested ray tracing
architecture is different from common CPUs. The memory performance is less affected by making
more jumps and fetching more but smaller nodes. Additionally, the highly parallel nature of the
tested hardware allows for effective sharing of scene data thus amortizing the cost of memory
accesses.

While GPUs also have thousands of threads, the SIMD organization of warps requires the memory
accesses to be highly aligned such that fewer but larger memory transactions are preferred. With
the recent addition of hardware acceleration for ray tracing in the NVIDIA Turing RTX architecture,
the ability of dual-split trees to become mainstream entirely depends on whether the memory

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:17

behavior can map well onto that hardware. This is something that cannot be explored without
detailed simulation models of the RTX hardware.

6 CONCLUSION
We have introduced hardware-accelerated dual-split trees and demonstrated their advantages using
detailed simulations on a general parallel hardware ray tracing architecture. Our simulation results
show that dual-split trees with specialized hardware intersection units can achieve significantly
faster performance than BVHswith different arities using hardware-accelerated ray-box intersection
tests in a variety of tested scenes. We have also compared with a software implementation of the
intersection logic and have shown that hardware acceleration is extremely effective in attaining
higher performance. In addition to performance improvements, a hardware-accelerated dual-split
tree also substantially reduces the energy consumption compared to the software implementation
and various kinds of BVHs. Both improving performance and lowering energy cost is a rare
combination of results.

REFERENCES
Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI 7:

New tools for interconnect exploration in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 14.

Carsten Benthin, Ingo Wald, Sven Woop, and Attila T. Áfra. 2018. Compressed-leaf Bounding Volume Hierarchies. In
High-Performance Graphics (HPG ’18). 1–4.

Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth Pugsley, Aniruddha Udipi, Ali Shafiee, Kshitij
Sudan, Manu Awasthi, and Zeshan Chishti. 2012. USIMM: the utah simulated memory module. Technical Report. University
of Utah.

Holger Dammertz, Johannes Hanika, and Alexander Keller. 2008. Shallow bounding volume hierarchies for fast SIMD ray
tracing of incoherent rays. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1225–1233.

Michael J Doyle, Colin Fowler, and Michael Manzke. 2013. A hardware unit for fast SAH-optimised BVH construction. ACM
Transactions on Graphics (TOG) 32, 4 (2013), 1–10.

Michael J Doyle, Ciaran Tuohy, and Michael Manzke. 2017. Evaluation of a BVH construction accelerator architecture for
high-quality visualization. IEEE Transactions on Multi-Scale Computing Systems (TMSCS) 4, 1 (2017), 83–94.

Bartosz Fabianowski and John Dingliana. 2009. Compact BVH storage for ray tracing and photon mapping. In Proceedings
of Eurographics Ireland Workshop. 1–8.

Venkatraman Govindaraju, Peter Djeu, Karthikeyan Sankaralingam, Mary Vernon, and William R. Mark. 2008. Toward A
Multicore Architecture for Real-time Ray-tracing. In 41st IEEE/ACM International Symposium on Microarchitecture.

Christiaan P Gribble and Karthik Ramani. 2008. Coherent ray tracing via stream filtering. In 2008 IEEE Symposium on
Interactive Ray Tracing (IRT ’08). 59–66.

Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. 2006. On the fast construction of spatial hierarchies for ray tracing.
In IEEE Symposium on Interactive Ray Tracing (IRT ’06). IEEE, 71–80.

Sean Keely. 2014. Reduced Precision for Hardware Ray Tracing in GPUs. In High-Performance Graphics (HPG ’14).
John Kelm, Daniel Johnson, Matthew Johnson, Neal Crago, William Tuohy, Aqeel Mahesri, Steven Lumetta, Matthew

Frank, and Sanjay Patel. 2009. Rigel: an architecture and scalable programming interface for a 1000-core accelerator. In
International Symposium on Computer Architecture (ISCA ’09).

Hong-Yun Kim, Young-Jun Kim, and Lee-Sup Kim. 2010a. Reconfigurable mobile stream processor for ray tracing. In IEEE
Custom Integrated Circuits Conference 2010 (CICC ’10).

Hong-Yun Kim, Young-Jun Kim, and Lee-Sup Kim. 2012. MRTP: Mobile Ray Tracing Processor With Reconfigurable Stream
Multi-Processors for High Datapath Utilization. IEEE Journal of Solid-State Circuits (JSSC) 47, 2 (2012), 518–535.

Tae-Joon Kim, BochangMoon, Duksu Kim, and Sung-Eui Yoon. 2010b. RACBVHs: Random-Accessible Compressed Bounding
Volume Hierarchies. IEEE Transactions on Visualization and Computer Graphics (TVCG) 16 2 (2010).

Daniel Kopta. 2016. Ray tracing from a data movement perspective. Ph.D. Dissertation. The University of Utah.
Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik Brunvand, and Al Davis. 2013. An energy and bandwidth efficient ray

tracing architecture. In Proceedings of High-Performance Graphics (HPG ’13). 121–128.
Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik Brunvand, and Al Davis. 2015. Memory Considerations for Low Energy

Ray Tracing. Computer Graphics Forum 34, 1 (2015), 47–59.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:18 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

Daniel Kopta, Josef Spjut, Erik Brunvand, and Alan Davis. 2010. Efficient MIMD architectures for high-performance ray
tracing. In IEEE International Conference on Computer Design (ICCD ’10).

Won-Jong Lee, Youngsam Shin, Jaedon Lee, Jin-Woo Kim, Jae-Ho Nah, Seokyoon Jung, Shihwa Lee, Hyun-Sang Park,
and Tack-Don Han. 2013. SGRT: A mobile GPU architecture for real-time ray tracing. In Proceedings of the 5th High-
Performance Graphics Conference (HPG ’13). 109–119.

Alexander Lier, Magdalena Martinek, Marc Stamminger, and Kai Selgrad. 2018. A High-Resolution Compression Scheme for
Ray Tracing Subdivision Surfaces with Displacement. Proc. ACM Comput. Graph. Interact. Tech. 1, 2 (Aug. 2018), 1–17.

Gábor Liktor and Karthik Vaidyanathan. 2016. Bandwidth-efficient BVH Layout for Incremental Hardware Traversal. In
Proceedings of High Performance Graphics (HPG ’16). 51–61.

Daqi Lin, Konstantin Shkurko, Ian Mallett, and Cem Yuksel. 2019a. Dual-split trees. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I3D ’19). 1–9.

Daqi Lin, Konstantin Shkurko, Ian Mallett, and Cem Yuksel. 2019b. Dual-split trees–supplemental materials. (2019).
Xingyu Liu, Yangdong Deng, Yufei Ni, and Zonghui Li. 2015. FastTree: A hardware KD-tree construction acceleration engine

for real-time ray tracing. In 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1595–1598.
Jae-Ho Nah, Hyuck-Joo Kwon, Dong-Seok Kim, Cheol-Ho Jeong, Jinhong Park, Tack-Don Han, Dinesh Manocha, and

Woo-Chan Park. 2014. RayCore: A ray-tracing hardware architecture for mobile devices. ACM Transactions on Graphics
(TOG) 33, 5 (2014), 1–15.

Karthik Ramani and Christiaan Gribble. 2009. StreamRay: A Stream Filtering Architecture for Coherent Ray Tracing. In
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09).

Jörg Schmittler, Ingo Wald, and Philipp Slusallek. 2002. SaarCOR – A Hardware Architecture for Realtime Ray-Tracing. In
EUROGRAPHICS Workshop on Graphics Hardware.

Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul, and Philipp Slusallek. 2004. Realtime Ray Tracing of Dynamic
Scenes on an FPGA Chip. In Graphics Hardware (GH ’04). 95–106.

Kai Selgrad, Alexander Lier, Magdalena Martinek, Christoph Buchenau, Michael Guthe, Franziska Kranz, Henry Schäfer,
and Marc Stamminger. 2016. A Compressed Representation for Ray Tracing Parametric Surfaces. ACM Transactions on
Graphics (TOG) 36, 1 (Nov. 2016).

Konstantin Shkurko, Tim Grant, Erik Brunvand, Daniel Kopta, Josef Spjut, Elena Vasiou, Ian Mallett, and Cem Yuksel.
2018. SimTRaX: Simulation Infrastructure for Exploring Thousands of Cores. In Proceedings of the 2018 on Great Lakes
Symposium on VLSI (GLSVLSI). 503–506.

Konstantin Shkurko, Tim Grant, Daniel Kopta, Ian Mallett, Cem Yuksel, and Erik Brunvand. 2017. Dual Streaming for
Hardware-accelerated Ray Tracing. In Proceedings of High Performance Graphics (HPG ’17).

Josef Spjut, Andrew Kensler, Daniel Kopta, and Erik Brunvand. 2009. TRaX: A multicore hardware architecture for real-time
ray tracing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 28, 12 (2009).

Josef Spjut, Daniel Kopta, Solomon Boulos, Spencer Kellis, and Erik Brunvand. 2008. TRaX: A Multi-Threaded Architecture
for Real-Time Ray Tracing. In IEEE Symposium on Application Specific Processors (SASP).

Elena Vasiou, Konstantin Shkurko, Erik Brunvand, and Cem Yuksel. 2019. Mach-RT: A Many Chip Architecture for
High-Performance Ray Tracing. In High-Performance Graphics (HPG ’19). ACM, New York, NY, USA.

Timo Viitanen, Matias Koskela, Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2017. MergeTree: A fast hardware
HLBVH constructor for animated ray tracing. ACM Transactions on Graphics (TOG) 36, 5 (2017), 1–14.

Timo Viitanen, Matias Koskela, Pekka Jääskeläinen, Aleksi Tervo, and Jarmo Takala. 2018. PLOCTree: A Fast, High-Quality
Hardware BVH Builder. Proc. ACM Comput. Graph. Interact. Tech. 1, 2 (2018), 1–19.

Carsten Wächter. 2008. Quasi-Monte Carlo light transport simulation by efficient ray tracing. Ph.D. Dissertation. Universität
Ulm.

Carsten Wächter and Alexander Keller. 2006. Instant ray tracing: The bounding interval hierarchy. Rendering Techniques
2006 (2006), 139–149.

Ingo Wald, Carsten Benthin, and Solomon Boulos. 2008. Getting rid of packets - Efficient SIMD single-ray traversal using
multi-branching BVHs. In Symposium on Interactive Ray Tracing (IRT ’08). 49–57.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014. Embree: a kernel framework for
efficient CPU ray tracing. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–8.

Sven Woop, Erik Brunvand, and Philipp Slusallak. 2006a. Estimating Performance of a Ray Tracing ASIC Design. In
Interactive Ray Tracing (IRT ’06).

Sven Woop, Gerd Marmitt, and Philipp Slusallek. 2006b. B-KD trees for hardware accelerated ray tracing of dynamic scenes.
In Graphics Hardware (GH ’06). 67–77.

Sven Woop, Jörg Schmittler, and Philipp Slusallek. 2005. RPU: A Programmable Ray Processing Unit for Realtime Ray
Tracing. ACM Transactions on Graphics (TOG) 24, 3 (July 2005).

Henri Ylitie, Tero Karras, and Samuli Laine. 2017. Efficient incoherent ray traversal on GPUs through compressed wide
BVHs. In Proceedings of High Performance Graphics (HPG ’17). 1–13.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:19

ray origin
(float3)

ray invdir
(float3)

MUX (x2)

Logic
Block

MUX (x2)

header bit[31:27]

axis 1, axis 2

ray origin 1, 2
(float)

ray invdir 1, 2
(float)

Logic Block

MUX MUX

plane1
(float)

plane2
(float)

ray sign 1, 2

near plane
(float)

far plane
(float)

dual-axis corner type
(to plane comparison)

Logic
Block

header
bit[28:27]
(corner type)

node type*

axis 1, axis 2

Fig. 10. The detailed view of the ray component and plane selection logic. Header data and derived
data from header (marked with asterisks) are colored using dark red. Round boxes with dashed outline
represent temporary data which are consumed by the next stage of pipeline. Relative areas of the units
in the diagram do not represent the actual relative areas.

A RAY COMPONENT AND PLANE SELECTION LOGIC
At the center of the dual-split pipeline there are two FPADD units and two FPMUL units, which
compute the intersection distances between the ray and the two planes. Before that, a ray component
and plane selection logic (Figure 10) is responsible for selecting 1 or 2 ray components from a 3D
vector corresponding to the splitting or carving axes, as well as assigning the planes as "near" or
"far" according to the 1D (splitting node or single-axis carving node) or 2D (dual-axis carving node)
ray direction. To accommodate both 1D and 2D cases, two multiplexers select two components
from the 3D ray invdir input, same for ray origin (Figure 10). Notice that the two components are
from the same axis in case of the splitting node or the single-axis carving node (1D case), where
the resulting ray sign is used to swap the two input planes. In the case of a splitting node, the ray
direction sign is also used by the later offset computation logic to assign the offset of the left and
right child (in the builder’s view) to the near and far child (in the ray view). For the dual-axis carving
node (2D case), the input plane order does not change and the ray signs are used to determine the
"corner type" (Figure 2) stored in bits[28:27] with respect to the ray direction. This "corner type" is
used as the input to the later plane comparison logic which selects the correct planes to compare.
Throughout this process the node header and its derived flags (color-coded as dark red in Figure 10,
which is also the case in Figure 11 and Figure 12) are used as inputs to simple combinational logic
blocks that produce bits to select the multiplexer inputs. An example derived flag is "node type"
which uses 2 bits to represent one of the splitting node, single-axis carving node, dual-axis carving
node, or leaf node. The purpose of these derived flags is to simplify the combinational logic by
using the previously computed results.

B PLANE COMPARISON AND RETURN VALUE LOGIC
Figure 11 shows the plane comparison and return value logic, which is responsible for generating
the new (tmin , tmax) range and the 2-bit return value, derived from the plane comparison results
and the node type. As shown in Figure 6, the floating point units produce t1 and t2, the ray-plane

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

20:20 Daqi Lin, Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand

3-way FPMAX 3-way FPMIN

FP <=FP >=

tmin
(float)

tmax
(float)

dual-axis
corner
type

FP <=

Logic Block

Logic Block

leaf
bit

node
type*

Logic Block

node type*

(float) (float)

splitting node
return value

(2 bits)

return value
(2 bits)

t1 t2

t1 t2

t1 >= tmin
(to offset
computation)

(comparison
flag)

(comparison
flag)

tout
min tout

max

(comparison
flag)

Fig. 11. The detailed view of the plane comparison and return value logic. The blue dashed line circles
the return value logic. Relative areas of the units in the diagram do not represent the actual relative
areas.

intersection distances. These are used as inputs to the plane comparison logic. Whether the ray
passes through the empty space and how many children the ray intersects depends on the node
type and the comparison between the current ray range (tmin , tmax) and the intersection distances.
The four different intersection cases of a splitting node are illustrated in Figure 3. Notice that the
case is entirely determined by the two boolean values, tmin ≤ t1 and tmax ≥ t2. The boolean values
are passed through a simple logic block that produces 2-bit splitting node return value (number
of children intersected), as an intermediate output to produce the final return value. Note that
t1 ≥ tmin is used as a signal to guide the offset computation. The near child is intersected and used
as the next node to traverse only when t1 ≥ tmin , and the far child is assigned as the node to push
to stack; otherwise, the far child is used as the next node to traverse. For the splitting node, the toutmin
and toutmax outputs are used to trim the ray range in the intersected children. They serve as the new
ray range when only one child is intersected; when both children are intersected, toutmin and toutmax
become the tmin and tmax of the far and the near child, respectively, since they both share the other
end of ray range with the parent. The determination of toutmin and toutmax depends on the intersection
case and comparing t1, t2 with the original tmin and tmax . This is done in a combination of the
floating point comparison units and the floating point min/max units.
For carving nodes, toutmin and toutmax represent the trimmed range. Apparently, when toutmin > toutmax

the ray is culled. This condition is determined by a floating point comparison unit (FP≤ in the figure)
and passed as an input to the final logic block to determine the return value. In the carving node
case, apart from 0 (no intersection) and 1 (has intersection), there is also a special case of 3, which
corresponds to an intersected carving node acting as a leaf node. As shown in Figure 4, when the
lowest bit in the 6-bit header is 1 in the carving node case, it indicates that the carving node directly
stores the triangle offset instead of a pointer to a standalone leaf node, which is a technique to avoid

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

Hardware-Accelerated Dual-Split Trees 20:21

left child size
(2 bits)

INTADD

offsetnear
(int)

MUX

offsetstack
(int)

t1 >= tmin

MUX

offset
(int)

header
bit[31]

offset
 (int)

ray sign

MUX MUX

ray sign

offsetfar
 (int)

Fig. 12. The detailed view of the offset computation logic. Relative areas of the units in the diagram
do not represent the actual relative areas.

wasting storage, by taking advantage that a carving node only has one child. Correspondingly, the
leaf bit is extracted from the header as an input to the last logic block. The derived node flag is also
connected to the logic block to choose the intermediate return type according to the node type.

Notice that we use 3-way FPMAX and FPMIN units to find toutmin and toutmax because unlike splitting
nodes or single-axis carving nodes that compute each of toutmin and toutmax from two values, dual-axis
carving nodes have two cases shown in Figure 2a and Figure 2d that require finding the minimum
or maximum of three values. For example, in Figure 2a, toutmax is chosen as the minimum of the three
values t1, t2, and tmax . The case of tmax (not shown in Figure 2a) corresponds to the case of the
original tmax being inside the non-empty region defined by the carving node. In this case, finding
the maximum only from t1 and t2 will incorrectly enlarge the ray range. The case for Figure 2d is
similar. Since the FPMAX and FPMIN units are shared by all node types, a logic block is responsible
for taking all possible planes (t1, t2, tmin , and tmax) and information including the node type and
the dual carving node corner type to produce the correct 3-way inputs.

C OFFSET COMPUTATION LOGIC
Figure 12 shows how the offsets for the near and far child nodes of a splitting node can be computed
using a simple logic block, based on the offset of the left child and the size of the left child encoded
in bits [25:0] and [28:27] of the header, respectively. An integer addition unit calculates the right
child offset by adding the left child size to the left child offset. The left and right child offsets are
assigned to the near and far child by the ray sign through multiplexers. After that, a result from
the plane comparison logic can assign the far child offset as the output offset for the next node to
traverse when only the far child is intersected. Finally, the output offset is set to the original offset
in the header to address the leaf triangles, when the node is not a splitting node.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 20. Publication date: August 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 BVH Optimizations
	2.2 Dual-Split Trees
	2.3 Ray Tracing Hardware

	3 Hardware Dual-Split Intersection Pipeline
	4 Implementation and Results
	4.1 Hardware Pipeline Energy and Area Cost
	4.2 Acceleration Structure Construction
	4.3 Ray Casting and Shadow Rays
	4.4 Path Tracing
	4.5 Parameter Exploration

	5 Discussions and Future Work
	6 Conclusion
	References
	A Ray Component and Plane Selection Logic
	B Plane Comparison and Return Value Logic
	C Offset Computation Logic

