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Hi everyone, I’m Daqi Lin from University of Utah. Today I’m going to introduce 
hardware-accelerated dual-split trees, which are ray tracing acceleration structures 
that exhitbit high performance on ray tracing hardware. This work is a collaboration 
with Elena Vasiou, Cem Yuksel, Daniel Kopta, and Erik Brunvand.
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Background: Acceleration Structures
• A key factor of high-performance ray tracing

For a background introduction, ray tracing is an essential technique to synthesize 
photorealistic images. A key factor of high-performance ray tracing is the acceleration 
structure, which provides fast spatial queries to find hit points along the ray, without 
checking all primitives in the scene.
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Background: Acceleration Structures
• A key factor of high-performance ray tracing

[Image from PBRT v3]

For a background introduction, ray tracing is an essential technique to synthesize 
photorealistic images. A key factor of high-performance ray tracing is the acceleration 
structure, which provides fast spatial queries to find hit points along the ray, without 
checking all primitives in the scene.
Without any acceleration structure, it is hard to imagine a complex image like this 
could be rendered in a reasonable amount of time.
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Background: Acceleration Structures
• A key factor of high-performance ray tracing

• BVHs are the most popular due to high performance

[Image from PBRT v3]

Currently, bounding volume hierarchies are the most popular acceleration structures, 
widely used in offline and real-time ray tracing, due to their high construction and 
traversal performance. 
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Background:  Recent Trend of BVHs

Noticing that memory cost is the bottleneck of ray tracing performance, recent work 
have focused on reducing the size of BVHs.
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Background:  Recent Trend of BVHs
• Wide BVH

Noticing that memory cost is the bottleneck of ray tracing performance, recent work 
have focused on reducing the size of BVHs.
One approach is to increase the branching factor so that each node has more than 2 
child nodes. This is also known as wide BVH. The benefit of using a wide BVH is that it 
reduces the number of internal levels, resulting in a smaller tree size and fewer 
traversal steps.
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Background:  Recent Trend of BVHs
• Wide BVH

• Quantization/Compression of BVH

Noticing that memory cost is the bottleneck of ray tracing performance, recent work 
have focused on reducing the size of BVHs.
One approach is to increase the branching factor so that each node has more than 2 
child nodes. This is also known as wide BVH. The benefit of using a wide BVH is that it 
reduces the number of internal levels, resulting in a smaller tree size and fewer 
traversal steps.
Another approach is to quantize the bounding planes and compress other parts of 
the node structure like child address, which can dramatically reduce the size of BVHs. 
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Background:  Recent Trend of BVHs
• Wide BVH

• Quantization/Compression of BVH

[Ylitie et al. 2017] [Benthin et al. 2018]

Noticing that memory cost is the bottleneck of ray tracing performance, recent work 
have focused on reducing the size of BVHs.
One approach is to increase the branching factor so that each node has more than 2 
child nodes. This is also known as wide BVH. The benefit of using a wide BVH is that it 
reduces the number of internal levels, resulting in a smaller tree size and fewer 
traversal steps.
Another approach is to quantize the bounding planes and compress other parts of 
the node structure like child address, which can dramatically reduce the size of BVHs. 
These two papers published in HPG 2017/2018 have taken both approaches, 
to get significant performance improvement compared to prior works.
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Background: Dual-Split Trees [Lin et al. 2019]

• Hybrid acceleration structure between k-d tree and BVH

[Lin et al. 2019]

Recently, we introduced dual-split trees, which is a hybrid acceleration structure 
between k-d tree and BVH.
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Background: Dual-Split Trees [Lin et al. 2019]

• Uses 31 - 48% less space than BVH2 with identical 
space partitioning

Recently, we introduced dual-split trees, which is a hybrid acceleration structure 
between k-d tree and BVH.
The key feature of dual-split trees is that it significantly reduces the space of a binary 
BVH, while representing the identical space partitioning.
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Background: Dual-Split Trees [Lin et al. 2019]

• Uses 31 - 48% less space than BVH2 with identical 
space partitioning

• Relatively minor performance improvement due to 
decoding and branching cost

Recently, we introduced dual-split trees, which is a hybrid acceleration structure 
between k-d tree and BVH.
The key feature of dual-split trees is that it significantly reduces the space of a binary 
BVH, while representing the identical space partitioning. 
However, compared to the space savings, we saw relatively small performance 
improvement, due to that fact that dual-split trees introduce extra decoding and 
branching cost. While decoding and branching are complex in software, they could be 
a simple task on hardware. That’s what motivates us
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Our Contribution
• We introduce hardware-accelerated dual-split trees

to introduce hardware-accelerated dual-split trees in this work.  We show that dual-
split tree traversal can be greatly accelerated by a hardware pipeline.
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Our Contribution
• We introduce hardware-accelerated dual-split trees

• Up to 31% less render time & 38% less energy than HW BVH2

to introduce hardware-accelerated dual-split trees in this work.  We show that dual-
split tree traversal can be greatly accelerated by a hardware pipeline.

With our implementation on ray tracing hardware, we see up to 31% less render 
time, and up to 38% less energy consumption in path tracing results, as compared to 
binary BVHs with identical space partitioning.
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Our Contribution
• We introduce hardware-accelerated dual-split trees

• Up to 31% less render time & 38% less energy than HW BVH2

• Higher performance & less energy than BVH2, BVH4, and BVH8 
on ray tracing hardware

to introduce hardware-accelerated dual-split trees in this work.  We show that dual-
split tree traversal can be greatly accelerated by a hardware pipeline.

With our implementation on ray tracing hardware, we see up to 31% less render 
time, and up to 38% less energy consumption in path tracing results, as compared to 
binary BVHs with identical space partitioning.

We also observed that hardware-accelerated dual-split trees achieves higher 
performance and consumes less energy than BVHs with 2, 4, and 8 child nodes.
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Dual-Split Trees [Lin et al. 2019]
An overview

Before introducing hardware-accelerated dual-split trees, let’s review what are dual-
split trees.
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BVH

BVH

BVH Node

Here are two examples of a BVH node, shown in 2D. Notice how the parent node 
shown as a box with dashed lines, share planes with the two child nodes. Because the 
same bounding plane is stored twice in both parent and one child, it is an inherent 
redundancy of the BVHs. 

However, we only need to know how the child nodes split the space of the parent 
node in order to the traverse the tree

16



Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node

BVH

BVH Node

So here comes the dual-split tree. In stead of storing two bounding boxes for the two 
children, 
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Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node

BVH

BVH Node

So here comes the dual-split tree. In stead of storing two bounding boxes for the two 
children, it only stores two axis-aligned splitting planes to separate the child nodes. 
This is similar to a k-d tree, but with two splitting planes instead of one.  
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Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node

BVH

BVH Node

So here comes the dual-split tree. In stead of storing two bounding boxes for the two 
children, it only stores two axis-aligned splitting planes to separate the child nodes. 
This is similar to a k-d tree, but with two splitting planes instead of one.  

As you can see, the bounding volume of the parent node is separated into two 
bounding volumes that can leave gap between them, 
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Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node

BVH

BVH Node

So here comes the dual-split tree. In stead of storing two bounding boxes for the two 
children, it only stores two axis-aligned splitting planes to separate the child nodes. 
This is similar to a k-d tree, but with two splitting planes instead of one.  

As you can see, the bounding volume of the parent node is separated into two 
bounding volumes that can leave gap between them, or overlap with each other. 
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Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node

BVH

BVH Node

So here comes the dual-split tree. In stead of storing two bounding boxes for the two 
children, it only stores two axis-aligned splitting planes to separate the child nodes. 
This is similar to a k-d tree, but with two splitting planes instead of one.  

As you can see, the bounding volume of the parent node is separated into two 
bounding volumes that can leave gap between them, or overlap with each other. The 
blue arrow on a splitting plane represent the plane normal, which points outwards.

We call a node like this, a splitting node.
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Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node

BVH

BVH Node

So here comes the dual-split tree. In stead of storing two bounding boxes for the two 
children, it only stores two axis-aligned splitting planes to separate the child nodes. 
This is similar to a k-d tree, but with two splitting planes instead of one.  

As you can see, the bounding volume of the parent node is separated into two 
bounding volumes that can leave gap between them, or overlap with each other. The 
blue arrow on a splitting plane represent the plane normal, which points outwards.

We call a node like this, a splitting node.

After splitting the child nodes, we noticed that inside the child bounding volume we 
just created, there are still empty spaces around the original child bounding boxes. 
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Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node Carving Node

BVH

BVH Node

Therefore, we create a carving node that also uses two planes, but to carve out the 
empty spaces. Notice that in the first case, we completely avoid storing any shared 
plane between the parent and the child nodes.
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Dual-Split Trees [Lin et al. 2019]

Dual Split Tree

Splitting Node Carving Node

BVH

BVH Node

Dual-axis Carving Node

Single-axis Carving Node

It is also possible to make two carving planes perpendicular to each other. This is 
known as the dual-axis carving node, as opposed to the single-axis carving node.  In 
3D, it is very common that after splitting in one axis, there are empty spaces on the 
two other axes.  In this case, one dual-axis carving node can carve out the empty 
spaces that would have required two single-axis carving nodes, saving a lot of space.
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Dual-Split Trees [Lin et al. 2019]

Two carving levels

One carving level

Dual Split Tree

Splitting Node Carving Node

BVH

BVH Node

In addition, if one carving level is not enough to carve out all empty spaces, we can 
create more than one successive carving nodes, making multiple carving levels. 
Notice that the relationship between the bounding box and carving planes 
guarantees that there are at most three carving levels.

25



Dual-Split Trees [Lin et al. 2019]

BVH Dual-Split Tree

To see how dual-split tree reduces the space of BVHs, here we compare an ordinary 
binary BVH to a dual-split tree. 
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Dual-Split Trees [Lin et al. 2019]

BVH Dual-Split Tree

4B pointer + 24B AABB = 

28B per node

To see how dual-split tree reduces the space of BVHs, here we compare an ordinary 
binary BVH to a dual-split tree. 
An ordinary BVH node uses a 4-byte pointer and a 24-byte AABB, summing up to 28 
bytes per node.
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Dual-Split Trees [Lin et al. 2019]

BVH Dual-Split Tree

4B pointer + 24B AABB = 

28B per node

4B header/pointer + 8B planes = 

12B per node

To see how dual-split tree reduces the space of BVHs, here we compare an ordinary 
binary BVH to a dual-split tree. 
An ordinary BVH node uses a 4-byte pointer and a 24-byte AABB, summing up to 28 
bytes per node.
In comparison, a dual-split tree splitting or carving node only uses 12 bytes.
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Dual-Split Trees [Lin et al. 2019]

• More nodes, less storage!

BVH Dual-Split Tree

56 bytes

36 bytes

4B pointer + 24B AABB = 

28B per node

4B header/pointer + 8B planes = 

12B per node

To see how dual-split tree reduces the space of BVHs, here we compare an ordinary 
binary BVH to a dual-split tree. 
An ordinary BVH node uses a 4-byte pointer and a 24-byte AABB, summing up to 28 
bytes per node.
In comparison, a dual-split tree splitting or carving node only uses 12 bytes.
Since on average only two carving nodes are created after a splitting node, as shown 
in our prior work. A pair of BVH child nodes can be converted to one splitting node 
and two carving nodes on average, reducing the size from 56 bytes to 36 bytes.

29



Dual-Split Trees [Lin et al. 2019]

• Can be converted from BVH easily

A dual-split tree can be converted from any given binary BVH very easily.

30



Dual-Split Trees [Lin et al. 2019]

• Can be converted from BVH easily / Can be built from scratch

A dual-split tree can be converted from any given binary BVH very easily. But since it’s 
a different acceleration structure on its own, it can also be built from scratch.

31



Dual-Split Trees [Lin et al. 2019]

• Can be converted from BVH easily / Can be built from scratch

• Traversal resembles k-d tree (maintains [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ])

A dual-split tree can be converted from any given binary BVH very easily. But since it’s 
a different acceleration structure on its own, it can also be built from scratch.
In terms of traversal, it resembles a k-d tree, in the sense that it maintains a t_min, 
t_max interval and trim this interval when intersecting with child nodes.
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Challenges of Dual-Split Trees

6-bit header of a dual-split tree node

However, a challenge of using dual-split trees is that they have different types of 
nodes with different functions. Each node type also has its own information stored in 
different bit positions. 
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Challenges of Dual-Split Trees

6-bit header of a dual-split tree node

A challenge of using dual-split trees is that they have different types of nodes with 
different functions. Each node type also has its own information stored in different bit 
positions. For example, a dual-axis carving node stores two bits to represent four 
possible corner types, 
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Challenges of Dual-Split Trees

4 “corner types” of dual-axis carving nodes

A challenge of using dual-split trees is that they have different types of nodes with 
different functions. Each node type also has its own information stored in different bit 
positions. For example, a dual-axis carving node stores two bits to represent four 
possible corner types, which corresponds to four different cases of plane normal 
signs in two axes that look like this. 
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Challenges of Dual-Split Trees

6-bit header of a dual-split tree node

All this information is packed in a 6-bit header, 
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Challenges of Dual-Split Trees

plane1

offsets

plane2

header

offsetsheader

(6 bits) (26 bits)

4 bytes 4 bytes 4 bytes

(6 bits) (26 bits)
6-bit header

Leaf

Internal Node

All this information is packed in a 6-bit header, which is a part of the first 4-byte word 
of the node.
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Challenges of Dual-Split Trees
• Decoding is expensive

plane1

offsets

plane2

header

offsetsheader

(6 bits) (26 bits)

4 bytes 4 bytes 4 bytes

(6 bits) (26 bits)
6-bit header

Leaf

Internal Node

All this information is packed in a 6-bit header, which is a part of the first 4-byte word 
of the node.
Although a compact representation reduces the node size, it requires bit 
manipulation to decode the information, which can be expensive in software.
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Challenges of Dual-Split Trees
• Branching is expensive

Red box circles all if statements

Furthermore, the different node types creates lots of branching. Here we show the 
software traversal kernel of dual-split trees, with all if statements circled with red 
boxes. As can be seen, the branching misprediction penalty could easy undermine the 
traversal performance.
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Hardware Dual-Split Trees
Our contribution

To solve these issues that limit the traversal performance, we introduce hardware 
acceleration for dual-split trees which largely eliminates the branching and decoding 
cost, since these tasks are simple in hardware.
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Hardware Dual-Split Intersection Pipeline

The hardware acceleration is provided by a hardware dual-split intersection pipeline.  
Notice that this pipeline is independent of the underlying hardware architecture. One 
could imagine implementing this as a part of a GPU or a custom ray tracing hardware. 
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Hardware Dual-Split Intersection Pipeline

Given a dual-split tree node, 
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Hardware Dual-Split Intersection Pipeline

and the current ray information as inputs
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Hardware Dual-Split Intersection Pipeline

the pipeline produces a pair of child offsets for up to 2 intersected children
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Hardware Dual-Split Intersection Pipeline

and the new valid hit distance range of the ray.
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0 – no intersection, 1 – single intersection, 2 – double intersections, 3 – leaf node

Hardware Dual-Split Intersection Pipeline

It also produces a 2-bit return value to guide the later code path. 
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Hardware Dual-Split Intersection Pipeline

Notice that the dual-split intersection pipeline consists 2 pairs of floating point adders 
and floating point multipliers, responsible for the ray-plane testing.  They occupy the 
majority of energy and area of the pipeline.
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Hardware Dual-Split Intersection Pipeline

In addition, the pipeline has a ray component and plane selection logic, 
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Hardware Dual-Split Intersection Pipeline

an offset computation logic,
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Hardware Dual-Split Intersection Pipeline

a plane comparison logic, and a return value logic. 

With these logic blocks, decoding can be handled automatically, and branching is 
completely eliminated, since we can treat all node types uniformly and select the 
result according to the node type.

Compared to the floating point adders and floating point multiplers, these logic 
blocks take up a relatively small area in the pipeline since they mainly consist of 
simple combinational logic and multiplexers. 
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Hardware Dual-Split Intersection Pipeline
• 3x less FPADD/FPMUL units than HW ray-box pipeline 

for BVH [Kopta et al. 2013] 

Here we compare our dual-split intersection pipeline to the ray-box intersection 
pipeline proposed by Kopta et al. Note that the ray-box pipeline uses 3 times more 
FPADD and FPMUL. 
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Hardware Dual-Split Intersection Pipeline
• 3x less FPADD/FPMUL units than HW ray-box pipeline 

for BVH [Kopta et al. 2013] 

2.6x less area
2.3x less energy

Numbers are calculated with units synthesized by 65nm CMOS library, assuming a 1GHz processor.

Here we compare our dual-split intersection pipeline to the ray-box intersection 
pipeline proposed by Kopta et al. Note that the ray-box pipeline uses 3 times more 
FPADD and FPMUL. 
The result of reducing these expensive units is that dual-split pipeline has 2.6x less 
area and 2.3x less energy compared to ray-box pipeline. Both pipelines have the same 
latency. 
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Evaluation

Now, we evaluate the performance of the hardware-accelerated dual-split trees. This 
include comparison with dual-split trees without acceleration, and BVHs with 
different branching factors.
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Test Platform: TRaX Architecture
• TRaX: a highly parallel and general MIMD architecture for 

high-performance ray tracing [Spjut et al. 2009]

Our test platform is a highly parallel and general MIMD architecture called TRaX, that 
allows high performance ray tracing using thousands of threads. 

We use TRaX because it is a general MIMD architecture, where the ray tracing task is 
completely software-controlled. This gives us confidence that the results we get can 
be extrapolated across a wide variety of architectures.
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Test Platform: TRaX Architecture
• We use a cycle-accurate simulator [Shkurko et al. 2018] 

for TRaX

We write our ray tracing program in C++, and use a cycle-accurate simulator to run 
our program on TRaX. 
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• Shared units on the thread multiprocessor (TM) can be 
reconfigured to pipelines

Test Setup

1 ray-box/

1 dual-split

pipeline

8 FPMUL

8 FPADD …

We implemented the hardware pipelines for BVHs and dual-split trees using the 
shared execution units on each thread multiprocessor, or TM. The shared execution 
units include 8 floating point multipliers and adders.
During runtime, a subset of the shared units can be reconfigured to a ray-box 
intersection pipeline for a BVH, or a dual-split intersection pipeline for dual-split 
trees.
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Test Setup

2 GB GDDR5 DRAM 

The simulated chip is connected to a 2GB GGDR5 DRAM, simulated by a complex 
memory simulation system.

57



• DST (Dual Split Tree with hardware acceleration)

• DST* (Dual Split Tree with software decoding)

• BVH2

• BVH4

• BVH8

Acceleration Structures

We compare the following acceleration structures in our test. The hardware 
accelerated dual-split tree. The dual-split tree with only software decoding. 
And BVHs with branching factors of 2, 4, and 8. we call them by BVH2, BVH4, and 
BVH8.
All these acceleration structures are converted from a high quality binary BVH, with 
their nodes stored in depth first order with sibling nodes stored consecutively in 
memory. And no plane quantization is used.
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• DST (Dual Split Tree with hardware acceleration)

• DST* (Dual Split Tree with software decoding)

• BVH2

• BVH4

• BVH8

Acceleration Structures

BVHs with single 

HW ray-box intersection pipeline
(test one box at a time)

Notice that the BVHs use a single hardware ray-box intersection pipeline, which 
means the bounding boxes in a node need to be tested sequentially,
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• DST (Dual Split Tree with hardware acceleration)

• DST* (Dual Split Tree with software decoding)

• BVH2

• BVH4

• BVH8

Acceleration Structures

BVHs with single 

HW ray-box intersection pipeline
(test one box at a time)

3x more units

3x more units

3x more units

Notice that the BVHs use a single hardware ray-box intersection pipeline, which 
means the bounding boxes in a node need to be tested sequentially. This ray-box 
intersection pipeline already uses 3 times more floating point adder and multipler
units than the dual-split pipeline.
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• DST (Dual Split Tree with hardware acceleration)

• DST* (Dual Split Tree with software decoding)

• BVH2, BVH2+

• BVH4

• BVH8

Acceleration Structures

BVHs with extended 

parallel ray-box intersection pipelines
(test all boxes at the same time)

6x more units

12 FPMUL

12 FPADD

Additionally, we compare with BVHs with extended parallel ray-box intersection 
pipelines, allowing testing all boxes in the node at the same time. 
The binary BVH with the enhanced pipeline is denoted as BVH2+. Note that it uses 6 
times more units than dual-split pipeline, and that requires adding more shared 
execution units to the TM.
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• DST (Dual Split Tree with hardware acceleration)

• DST* (Dual Split Tree with software decoding)

• BVH2, BVH2+

• BVH4, BVH4+

• BVH8

Acceleration Structures

BVHs with extended 

parallel ray-box intersection pipelines
(test all boxes at the same time)

6x more units

12x more units

24 FPMUL

24 FPADD

Similarly, we have BVH4+ that uses a pipeline with 12x more units than dual-split 
pipeline, which requires to add even more functional units to the TM.

62



• DST (Dual Split Tree with hardware acceleration)

• DST* (Dual Split Tree with software decoding)

• BVH2, BVH2+

• BVH4, BVH4+

• BVH8, BVH8+

Acceleration Structures

BVHs with extended 

parallel ray-box intersection pipelines
(test all boxes at the same time)

6x more units

12x more units

24x more units

48 FPMUL

48 FPADD

And BVH8+, with 24 times more units to test 8 bounding boxes simultaneously 
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Test Cases
• Ray casting and shadow rays

To evaluate the performance of the acceleration structures, we test them in two 
different scenarios. The first test renders an image with only direct lighting. So there 
are only primary rays and shadow rays.
The second test is path tracing with 5 diffuse bounces, which generates highly 
incoherent rays. 
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Test Cases
• Ray casting and shadow rays

• Path tracing with 5 diffuse bounces

To evaluate the performance of the acceleration structures, we test them in two 
different scenarios. The first test renders an image with only direct lighting. So there 
are only primary rays and shadow rays.
The second test is path tracing with 5 diffuse bounces, which generates highly 
incoherent rays to stress the acceleration structures. 
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Test Scenes

We test with these 6 scenes with different levels of geometric complexities.
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Tree Size

We test with these 6 scenes with different levels of geometric complexities.
Notice that dual-split trees reduce the tree sizes compared to all BVH variants.
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Ray Casting and Shadow Rays
Frame time (ms)

Energy(J)

Here we present the performance results. The upper row is the frame time, the lower 
row is the total energy consumption. Note that these numbers are the lower the 
better. 
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Energy(J)

Ray Casting and Shadow Rays
Frame time (ms)

As can be seen, for ray casting test, hardware dual-split trees consistently 

consumes less energy than all other acceleration structures,
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Energy(J)

Frame time (ms)

Ray Casting and Shadow Rays

As can be seen, for ray casting test, hardware dual-split trees consistently 

consumes less energy than all other acceleration structures. It also performs 
faster than all other acceleration structures, 
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Energy(J)

Frame time (ms)

Ray Casting and Shadow Rays
Sometimes BVH2+ can be faster,

but at the cost of more energy and 

functional units

except BVH2+, which sometimes can be faster, but at the cost of using more energy 
and functional units.
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Energy(J)

Frame time (ms)

Ray Casting and Shadow Rays

-25% -2%
-10%

-11%

-20%
-5%

Compared to the baseline BVH2, hardware dual-split trees reduces the render time 
by 2% - 25%, 
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Energy(J)

Frame time (ms)

-25% -2%
-10%

-11%

-20%
-5%

Ray Casting and Shadow Rays

-41%
-23%

-25%

-28%

-37%
-24%

Compared to the baseline BVH2, hardware dual-split trees reduces the render time 
by 2% - 25%, and reduces the energy consumption by 23% to 41%.
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Energy(J)

Frame time (ms)

Ray Casting and Shadow Rays

-34%
-31%

-33%
-33%

-20%
-33%

-28%

-25%

-25%

-17%
-27%

-26%

Compared to the software-decoded dual-split trees represented in pale blue, 
hardware dual-split trees reduces the render time by 20%-34% and reduces the 
energy by 17%-28%. 
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Path Tracing
Frame time (ms)

Energy(J)

Now we look at the path tracing results.  In this case, hardware dual-split trees 
perform consistently faster and use less energy than all other acceleration structures 
we tested.  
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Path Tracing

-21% -23%
-26% -25%

-28%

-31%

Frame time (ms)

Energy(J)

hardware dual-split trees achieve 21%-31% render time reduction compared to the 
baseline. Notice that the speedup roughly grows with the scene size, since dual-split 
trees are less memory bound with their reduced memory footprint
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Path Tracing

-21% -23%
-26% -25%

-28%

-31%

-38% -30%

-28%
-26%

-34%
-38%

Frame time (ms)

Energy(J)

hardware dual-split trees also reduce the energy consumption by 26%-38%, far 

better than other acceleration structures. 
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Path Tracing

-34%
-30%

-18% -10%

-0%

-31%

-24%
-17%

-13%
-11%

-15%

-19%

Frame time (ms)

Energy(J)

Here we show how hardware dual-split trees improves performance over software 
dual-split trees. hardware dual-split trees reduce the frame time by up to 34% and 
energy by up to 24%. 
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Path Tracing

-34%
-30%

-18% -10%

-0%

-31%

-24%
-17%

-13%
-11%

-15%

-19%

Frame time (ms)

Energy(J)

Here we show how hardware dual-split trees improves performance over software 
dual-split trees. hardware dual-split trees reduce the frame time by up to 34% and 
energy by up to 24%. 
But when the scenes becomes large or have high depth complexity, the performance 
of software dual-split trees tends to catch up with the hardware dual-split trees as 
the ray tracing cost is dominated by memory transaction. 
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Energy Breakdown (path tracing)
• Both DST and DST* reduce all three kinds of energy 

consumption as compared to all BVH variants

Energy breakdown (J), Hairball

Here, we break down the energy consumption into 3 parts, DRAM, cache and 
compute in the hairball scene. We can see that that both software and hardware 
dual-split trees reduce all types of energy as compared to the BVH variants. 
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Energy Breakdown (path tracing)
• Both DST and DST* reduce all three kinds of energy 

consumption as compared to all BVH variants

Energy breakdown (J), Hairball

Here, we break down the energy consumption into 3 parts, DRAM, cache and 
compute in the hairball scene. We can see that that both software and hardware 
dual-split trees reduce all types of energy as compared to the BVH variants. 
In addition, hardware dual-split trees consume much less cache energy than software 
dual-split trees, since it reduces the data movement within on-chip storage, which 
happens in software decoding.
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Scalability
• We increase/decrease the TMs to test scalability

• Dual-split trees and BVH8 scales better than BVH2/4

In terms of scalability, the results in our paper show that dual-split trees scale better 
than BVH2 and 4 as the number of TMs grows, which is at a similar level as BVH8. 
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Conclusion
• Hardware acceleration is a great fit for dual-split trees

To sum up, we have introduced hardware-accelerated dual-split trees and 

demonstrated their advantages using detailed simulations on a general parallel 

hardware ray tracing architecture.

We found that hardware acceleration is extremely effective in unleashing the 

performance of dual-split trees,
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Conclusion
• Hardware acceleration is a great fit for dual-split trees

• 1.27-1.46x speedup over HW BVH2

To sum up, we have introduced hardware-accelerated dual-split trees and 

demonstrated their advantages using detailed simulations on a general parallel 

hardware ray tracing architecture.

We found that hardware acceleration is extremely effective in unleashing the 

performance of dual-split trees. More specifically, they achieve 1.27-1.46x 

speedup over hardware-accelerated binary BVHs.
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Conclusion
• Hardware acceleration is a great fit for dual-split trees

• 1.27-1.46x speedup over HW BVH2

• Benefits over all BVH types
• performance improvement

• energy reduction

• space savings

• fewer computational units

To sum up, we have introduced hardware-accelerated dual-split trees and 

demonstrated their advantages using detailed simulations on a general parallel 

hardware ray tracing architecture.

We found that hardware acceleration is extremely effective in unleashing the 

performance of dual-split trees. More specifically, they achieve 1.27-1.46x 

speedup over hardware-accelerated binary BVHs. 

Compared to hardware-accelerated BVHs with all different branching factors, 

hardware-accelerated DST can substantially improve the performance and 

reduce the energy consumption on top of substantial space savings, and the 
fact that they use significantly fewer computational units.
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Future work
• Quantization and more compact tree structure

For future work, one can explore quantization and more compact tree structure for 
dual-split trees. For example, future work can find out whether dual-split trees with 
collapsed tree levels and plane quantization provides the same amount of speedup as 
compared with the case for BVHs.
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Future work
• Quantization and more compact tree structure

• Explore performance on different hardware

For future work, one can explore quantization and more compact tree structure for 
dual-split trees. For example, future work can find out whether dual-split trees with 
collapsed tree levels and plane quantization provides the same amount of speedup as 
compared with the case for BVHs.

Another interesting future work is to explore the performance on different hardware 
architecture. 
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