
Dual-Split Trees
Daqi Lin, Konstantin Shkurko, Ian Mallett, Cem Yuksel

University of Utah

I3D 2019

Presenter
Presentation Notes
Hello everyone, I’m Daqi Lin from University of Utah. Today I’m going to introduce dual-split trees, a new ray tracing acceleration structure.

Dual-Split Trees

• Identical space partitioning to BVHs
• Up to 48% less space
• Up to 30% higher performance

Presenter
Presentation Notes
Our dual-split trees can represent space partitioning identical to any given bounding volume hierarchy. Our results show up to 48% space saving and up to 30% higher ray tracing performance than the bounding volume hierarchy. This is achieved by eliminating the redundant information stored in the BVHs.

Motivation

• The two children of a BVH node have 12 planes,
where 6 planes are always shared with the parent

BVH

Presenter
Presentation Notes
Our motivation is that we noticed some inherent redundancy in BVHsThe two children of a BVH node have 12 planes in their bounding boxes, where 6 planes are always shared with the parent bounding box, which means we are storing a lot of planes repeatedly in the tree.But in fact, what we want to know is how the child bounding boxes partition the space of the parent.An acceleration structure that only stores the partitioning is a k-d tree. Each node in the k-d tree relies on an axis-aligned plane to split its child nodes. But the kd-tree doesn’t allow child nodes to have overlapping space.

Motivation

• The two children of a BVH node have 12 planes,
where 6 planes are always shared with the parent

• Our solution
– New acceleration structure
– Hybrid BVH and kd-tree

Presenter
Presentation Notes
Our solution is a new acceleration structure which is a hybrid of BVH and kd-tree. It only stores the partitioning and it allows child nodes to overlap in space. Now, let me explain it more.

BVH

BVH

BVH Node

Presenter
Presentation Notes
Here are two BVH nodes. In the upper one the child bounding boxes are disjoint and in the lower one the child bounding boxes are overlapping.

Dual-Split Trees

BVH Dual Split Tree

Splitting NodeBVH Node

Presenter
Presentation Notes
Instead of storing two bounding boxes for the two children as in the case of a BVH, Our dual split tree, uses two splitting planes to separate the children along a single axis to two bounding volumes which may or may not overlap. We show both cases here. These arrows represent the plane normals so that you can differentiate between these two cases. A node with these two splitting planes is called a splitting node. The children of a splitting node can again be splitting nodes.

Dual-Split Trees

Dual Split Tree

Splitting Node Carving Node

BVH

BVH Node

Presenter
Presentation Notes
But if there are empty spaces around the bounding box, we create a carving node first, which contains two planes that carve out the empty spaces. We call them carving planes. Since the carving planes bound the geometry instead of splitting it, a carving node only has one child. And we may need several carving nodes before we reach a splitting node or a leaf, since in some cases we cannot carve out the empty space using only two planes.As a result, we convert a BVH node into a splitting node and a carving node. And using these two types of nodes we eliminate most of the planes shared with the parent in the child nodes.

Tree Structure
• More nodes, less storage!

BVH Dual-Split Tree

Presenter
Presentation Notes
Here we compare the tree structure of a DST and a BVH to show that DSTs use less storage to represent the same space partitioning. In this diagram we show that the two child nodes of a BVH node can be equivalently expressed as a splitting node and one or more carving nodes for each child. There can be at most 3 carving nodes for each child. But on average, there is only one carving node for each child. And if there are 3 carving nodes for one child, there are none for another child. This is determined by the geometric relationship.

Tree Structure
• More nodes, less storage!

BVH Dual-Split Tree

56 bytes

36 bytes

Presenter
Presentation Notes
In this diagram, the two BVH nodes use 56 bytes. In the average case it can be converted to one splitting node and two carving nodes. Although it has one more node, because each node stores two planes instead of a bounding box, the node size is much smaller and the total size is only 36 bytes.In this way, we can take any BVH and convert it to a DST with a smaller size.

Dual-Split Trees

• Carving planes can also be perpendicular

Dual-axis Carving Node Single-axis Carving Node

Presenter
Presentation Notes
Another important thing about DST is that the carving planes can also be perpendicular to each other. This is known as the dual-axis carving node. In 3D, it is a very frequent case that the empty spaces are on two axes. In this case, one dual-axis carving node can carve out the empty spaces that would have required two single-axis carving nodes.

Dual-Split Trees

• Carving planes can also be perpendicular

Dual-axis Carving Node Single-axis Carving Node

• Carving nodes can act as leaf nodes

Presenter
Presentation Notes
Another thing about carving nodes is that they can act as leaf nodes. Like all other acceleration structures, dual-split trees contain leaf nodes that point to lists of scene primitives. But if the child of a carving node is a leaf node, we don’t create a separate leaf node. Instead, we store the pointer to the scene primitives, directly in the carving node.

Construction

• Directly build from the scene geometry
or

• Convert from a BVH

Presenter
Presentation Notes
Now we know all types of nodes. And we want to build the DST. Of course we can directly build a DST from the scene geometry. But converting it from a BVH allows us to have the same space partitioning for a fair comparison.

Construction

• Directly build from the scene geometry
or

• Convert from a BVH

Presenter
Presentation Notes
In our implementation, we choose to construct the dual-split trees by converting them from BVHs. While they keep the same space partitioning as the BVHs, there are still some degrees of freedom in the construction process and we want to find the best options.

Construction from BVH
• Select axis that yields the lowest SAH cost

or

Presenter
Presentation Notes
For example, to create a splitting node we have three options for choosing the splitting axis, x, y, z. And we want to select the axis that gives the minimum surface area heuristic cost or SAH cost for short.Because different axes will create bounding volumes with different surface areas, as you can see here. One axis will give the lowest surface area heuristic cost and our builder selects that as the splitting axis.

• Select carving node order/type that yields the lowest SAH cost

Construction from BVH

Presenter
Presentation Notes
Apart from selecting the best splitting axis, we also need to select the best carving node order and carving node types in case of more than one carving node. In this example, there are empty spaces around the bounding box. And we show all 6 ways of creating carving nodes. The two figures in the left column use two single axis carving nodes but in different order. The other four figures use two dual-axis carving nodes in different orientations. One of the configurations will give us the lowest SAH cost.

Construction from BVH

• Carving nodes with approximate bounds

Approximate BoundsIdentical Bounds

Presenter
Presentation Notes
Our builder also has an option to delay creating a carving plane until deeper in the dual-split tree.During the construction from a BVH, we may find that adding carving nodes increases the SAH cost compared to not adding them, especially when carving a very small amount, as shown in this figure.In this case, skipping the second carving node allows the first carving node to provide approximate bounds.

Construction from BVH

• Carving nodes with approximate bounds

Approximate BoundsIdentical Bounds

Identical Dual-Split Tree Similar Dual-Split Tree

Presenter
Presentation Notes
We call a dual-split tree that contains these approximate bounds a similar dual-split tree, as opposed to an identical dual-split tree.

Node Structure

Leaf

plane1Internal Node

offsets

plane2

header

offsetsheader

(6 bits) (26 bits)

4 bytes 4 bytes 4 bytes

(6 bits) (26 bits)

Presenter
Presentation Notes
Now let’s look at the node structure of our dual-split tree. We use variable sized nodes. Each leaf node is 4 bytes, each internal node is 12 bytes where the extra 8 bytes are used to store the two splitting or carving planes.

Node Structure

plane1

offsets

plane2

header

offsetsheader

(6 bits) (26 bits)

4 bytes 4 bytes 4 bytes

(6 bits) (26 bits)
6-bit header

Leaf

Internal Node

Presenter
Presentation Notes
For any node, the first 6 bits of the first 4 bytes are the header which indicates the type of the node. The lower 26 bits store an integer offset which either points to the left child or the position in the triangle list.The right child is always stored next to the left child

Traversal

• Follows kd-tree order
• Additional case of passing through empty space

Presenter
Presentation Notes
The traversal is also very simple. It follows a k-d tree order, where the ray direction along the splitting axis determines the first child to test. But this time, because we have two splitting planes, we need to process an additional case that the ray pass through the empty space between the two splitting planes.

Evaluation method

• Compare with BVH and similar previous methods
• We use Embree to build the BVH
• Compare

– space consumption
– traversal speed

Presenter
Presentation Notes
Now we know everything about dual split trees. The next thing is to evaluate the performance of the dual-split tree and compare it to a BVH and the similar previous methods.We use the Embree BVH builder to build the BVH. And we convert DST and all other AS from the BVH to have an identical SP, using surface area heuristics. Our main metrics of performance are the traversal speed measured in frame time and the space consumption.

Evaluation method

• Additionally we include similar dual-split trees in
our test

Approximate BoundsIdentical Bounds

Identical Dual-Split Tree Similar Dual-Split Tree

Presenter
Presentation Notes
Additionally we include similar dual-split trees in our test to see how approximate bounds can provide more space savings and potential performance improvement.

Similar Previous Methods

Presenter
Presentation Notes
Before showing the results, let’s briefly review the similar previous methods we use. They are either a hybrid of BVH and kd-tree like ours, or a BVH compression.

Similar Previous Methods

• BIH [Wächter & Keller et al., 2006]

Presenter
Presentation Notes
First, BIH, or bounding interval hierarchy, uses two clipping planes in every internal node to separate the geometry. This is just like our splitting node. In fact, the idea of adding one more splitting plane to the kd-tree node can be traced back to 1980s. The BIH paper also introduced a fast non-greedy builder.

Similar Previous Methods

• BIH [Wächter & Keller et al., 2006]

• H-Tree [Havran et al., 2006]

Presenter
Presentation Notes
Another hybrid structure is called H-Tree. H-Tree has the same splitting nodes, additionally they introduce bounding nodes which can contain either two parallel bounding planes or a full bounding box.

Similar Previous Methods

• BIH [Wächter & Keller et al., 2006]

• H-Tree (Havran et al., 2006)

• Compact BVH
[Fabianowski & Dingliana, 2009]

Presenter
Presentation Notes
Later on, compact BVH was introduced. Different from the other two structures, it is a pure BVH compression. Because a pair of child bounding boxes share exactly 6 planes with their parent bounding box, in compact BVH an internal node only stores 6 planes for its children and which child node these 6 planes belong to.

Test scenes
• Scenes are rendered by path tracing

Presenter
Presentation Notes
Our test scenes have triangle counts range from about 200K to 12.8M. Notice that there are scenes with very regular geometry like the sodahall and scenes with highly irregular geometry like the hairhall.For all tests, we use diffuse bounce only path tracing. This is to make incoherent rays to stress the acceleration structures used in the test. To produce the test statistics, we rendered the images in 1K by 1K resolution and averaged the results in 32 frames.

• Space Consumption

Results

100% 62% 53% 87% 82% 57%

(Values shown in red are the smallest in the comparison)

Average

Presenter
Presentation Notes
First, let’s compare the average space consumption of different acceleration structures with the BVH being the baseline. The values shown in red are the smallest in the comparisons

• Space Consumption

Results

100% 62% 53% 87% 82% 57%

(Values shown in red are the smallest in the comparison)

Average

Presenter
Presentation Notes
We can see that on average similar dual-split trees have the lowest space consumption, they use 53% of the space of BVH.

• Space Consumption

Results

100% 62% 53% 87% 82% 57%

(Values shown in red are the smallest in the comparison)

Average

Presenter
Presentation Notes
The second lowest space consumption comes from the compact BVH, at 57%.

• Space Consumption

Results

100% 62% 53% 87% 82% 57%

(Values shown in red are the smallest in the comparison)

Average

Presenter
Presentation Notes
And it is followed by identical dual-split trees at 62%.

• Space Consumption

Results

100% 62% 53% 87% 82% 57%

(Values shown in red are the smallest in the comparison)

Average

Presenter
Presentation Notes
In comparison, H-Tree, and BIH, have much higher space consumptions, both of which are higher than 80%

Results
• Average Frame Time

100%

(Values shown in red are the smallest in the comparison)

86% 86% 97% 96% 109%Average

Presenter
Presentation Notes
In terms of traversal speed, we compare different acceleration structures by the frame time, the lower the better.

Results
• Average Frame Time

100%

(Values shown in red are the smallest in the comparison)

86% 86% 97% 96% 109%Average

Presenter
Presentation Notes
We can see that on average, both versions of dual split trees use 86% of the frame time of BVH, which are the best in all compared structures.

Results
• Average Frame Time

100%

(Values shown in red are the smallest in the comparison)

86% 86% 97% 96% 109%Average

Presenter
Presentation Notes
The BIH and H-Tree have the similar frame times which are above 95% of the BVH frame time.

Results
• Average Frame Time

100%

(Values shown in red are the smallest in the comparison)

86% 86% 97% 96% 109%Average

Presenter
Presentation Notes
The slowest acceleration structure turns out to be the Compact BVH, which is slower than the BVH.

Results

Presenter
Presentation Notes
Here we show a bar chart to visualize the structure sizes and the average frame times produced by all acceleration structures in different scenes. The two versions of dual-split trees are highlighted in warm colors and put at last. The upper row shows that the similar dual-split trees which is the last bar, consume the least amount of space in almost all scenes. The lower row shows that both versions of dual-split trees have lower frame times than other acceleration structures in all scenes.

Additional Analysis
Percentage of 0-3 Consecutive Carving Nodes

Presenter
Presentation Notes
As an additional analysis, we can see how similar dual split trees save more space from this histogram of consecutive carving nodes. As we mentioned before, there can be at most three carving nodes for each child of a splitting node. But on average there is only one for each child. This fact is shown in the upper row. The bar for 1 carving node in all scenes is much higher than other numbers of carving nodes. And three consecutive carving nodes are extremely rare as you can barely see the red bars that represent three consecutive carving nodes.By using a similar dual-split tree, we can reduce the number of consecutive carving nodes in all scenes. The lower row shows the change. Notice that the no carving node case has a much higher proportion in all scenes. The result is smaller structure sizes.

Additional Analysis

Presenter
Presentation Notes
A reason that dual-split trees are faster than BVHs is that they heavily reduce the number of ray-plane intersections to about 40 percent of that of BVH, and this ratio is lower than similar previous structures. In comparison, numbers of triangle intersections are only slightly increased due to the k-d tree traversal order.

Additional Analysis
• Nodes Traversed per Ray

– BVH: 100%
– Dual-split tree (identical): 209%
– Dual-split tree (similar): 206%
– BIH: 257%
– H-Tree: 188%
– Compact BVH: 100%

Presenter
Presentation Notes
But on the other hand, the dual-split trees visit about twice more nodes than the BVH. This also true for other hybrid structures because these structures break one BVH node into multiple nodes. If we can somehow reduce the number of nodes in the dual-split tree, we can reduce the additional memory jumps in traversal and as a result, achieve higher performance.

Conclusion

• We introduce dual split trees
– can be easily converted from any BVHs
– substantial space savings
– performance improvement

Presenter
Presentation Notes
In conclusion, We have introduced dual split trees, a new ray tracing acceleration structure that can be easily converted from any BVH to have an identical or similar space partitioning and provide substantial space savings and better ray tracing performance than BVH and similar previous methods.

Thank you

• Project page
https://dqlin.xyz/pubs/2019-i3d-DST/

Presenter
Presentation Notes
Thank you for listening.

https://dqlin.xyz/pubs/2019-i3d-DST/

Dual-Split Trees

I3D 2019

	Dual-Split Trees
	Dual-Split Trees
	Motivation
	Motivation
	BVH
	Dual-Split Trees
	Dual-Split Trees
	Tree Structure
	Tree Structure
	Dual-Split Trees
	Dual-Split Trees
	Construction
	Construction
	Construction from BVH
	Construction from BVH
	Construction from BVH
	Construction from BVH
	Node Structure
	Node Structure
	Traversal
	Evaluation method
	Evaluation method
	Similar Previous Methods
	Similar Previous Methods
	Similar Previous Methods
	Similar Previous Methods
	Test scenes
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Additional Analysis
	Additional Analysis
	Additional Analysis
	Conclusion
	Thank you
	Dual-Split Trees

