

Real-Time Rendering with Lighting Grid Hierarchy

Daqi Lin & Cem Yuksel University of Utah

I3D 2019

Direct illumination only

Our method (estimate global illumation from 1 million VPLs)

Our method (estimate global illumation from 1 million VPLs, interleaved sampling)

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

• Rendering with many lights

[Image source: https://80.lv/articles/the-future-of-real-time-rendering-with-lumberyard/]

- Rendering with many lights
- Instant Radiosity [Keller 1997]

- Rendering with many lights
- Instant Radiosity [Keller 1997]

- Rendering with many lights
- Instant Radiosity [Keller 1997]

- Rendering with many lights
- Instant Radiosity [Keller 1997]

- Rendering with many lights
- Instant Radiosity [Keller 1997]

- Rendering with many lights
- Instant Radiosity [Keller 1997]
 - Only efficient if VPL count is small

Offline Methods

Lightcuts [Walter et al. 2005]

Matrix Row-Column Sampling [Hašan et al. 2007]

• Offline Methods (temporally unstable)

Lightcuts [Walter et al. 2005]

Matrix Row-Column Sampling [Hašan et al. 2007]

• Offline Methods (temporally stable)

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

• Real-Time Methods

Clustered Shading [Olsson et al. 2012]

• Real-Time Methods

Clustered Shading [Olsson et al. 2012]

VPL (with global influence) imes

• Real-Time Methods

Forward light cuts [Laurent et al. 2016]

• Real-Time Methods

Forward light cuts [Laurent et al. 2016]

Real Time Rendering With Lighting Grid Hierarchy

• Ours

- A large number of lights
- VPL (with global Influence)
- VPL Shadows

Real-time solution to many-lights

Real time global illumination with VPLs

• Grid Lights

 \mathbb{S}_1

• Blending Functions (larger α improves accuracy)

Our Algorithm

GPU Construction of LGH

2

Lighting Computation

Shadow Sampling

Our Algorithm

GPU Construction of LGH

Lighting Computation

Shadow Sampling
Scatter VPLs to all levels ×

Ū

• Gather X Need to search for surrounding VPLs! S_1 \mathbb{S}_{2}

• Scatter VPLs to S₁

• Scatter VPLs to S_1 , gather from S_1 for upper levels \checkmark

• Lighting grid hierarchy build time for 100k VPLs

	Scatter VPLs	Gather from \mathbb{S}_1
Compute bounds	1.7 ms	1.7 ms
Compute S_1	2.3 ms	2.3 ms
Compute \mathbb{S}_2	2.3 ms	1.0 ms
Compute S_3	4.7 ms	1.0 ms
Compute \mathbb{S}_4	23 ms	2.0 ms
Compute S_5	107 ms	1.0 ms
Compute \mathbb{S}_6	405 ms	1.1 ms
Compute S_7	1,563 ms	1.5 ms
Merge levels	0.5 ms	0.5 ms
Total	2,110 ms	12.1 ms

¹⁷⁴x faster

1042x faster

• Lighting grid hierarchy build time for 100k VPLs

Total	2,110 ms	12.1 ms
Merge levels	0.5 ms	0.5 ms
Compute S ₇	1,563 ms	1.5 ms
Compute S_6	405 ms	1.1 ms
Compute S_5	107 ms	1.0 ms
Compute S_4	23 ms	2.0 ms
Compute S_3	4.7 ms	1.0 ms
Compute \mathbb{S}_2	2.3 ms	1.0 ms
Compute S_1	2.3 ms	2.3 ms
Compute bounds	1.7 ms	1.7 ms
	Scatter VPLs	Gather from \mathbb{S}_1

Our Algorithm

GPU Construction of LGH

Lighting Computation

Shadow Sampling

Generate VPLs from light sources

• Build Lighting Grid Hierarchy

Rasterize lights as (coarse) spheres in a deferred renderer

• Splat illumination attenuated by the blending function

Instanced Draw Call

• Splat illumination attenuated by the blending function

Unshadowed indirect illumination!

1K grid lights5K grid lights28K grid lights144K grid lightsAvrg. Overdraw: 135Avrg. Overdraw: 190Avrg. Overdraw: 222Avrg. Overdraw: 254

Our Algorithm

GPU Construction of LGH

Lighting Computation

Shadow Sampling

Send shadow rays to hundreds of lights / pixel ! X

- Send shadow rays to hundreds of lights / pixel ! ×
- Small number of shadow samples & Importance sampling

• Shadow Ratio Estimator [Heitz et al. 2018]

• Our method: pick k shadow samples with desired probabilities using a fixed memory footprint

• Our method: pick k shadow samples with desired probabilities using a fixed memory footprint

Each fragment samples a position in the point cloud of grid light *i*

• Our method: pick k shadow samples with desired probabilities using a fixed memory footprint

The sampled light overwrites the shadow sample with a probability related to f_i (its P.D.F.) and $\sum_{j=0}^{i} f_j$ (the sum of previous P.D.F.)

• Our method: pick k shadow samples with desired probabilities using a fixed memory footprint

Result: Light *i* (P.D.F. f_i) picked with desired probability $\frac{f_i}{\sum_{j=0}^n f_j}$

4 samples/pixel

F

No Importance Sampling

4 samples/pixel

F

4 samples/pixel

F

Our Algorithm

GPU Construction of LGH

2

Lighting Computation

Shadow Sampling

Settings:Graphics Card:Crytek Sponza at 1280 x 720 ($\alpha = 1$)RTX 2080

Number of VPLs	1K	10K	100K	1M
VPL Generation	0.1 ms	0.2 ms	0.4 ms	2.5 ms
Hierarchy Construction	7.0 ms	9.2 ms	12.1 ms	32.0 ms

Results

Settings:Graphics Card:Crytek Sponza at 1280 x 720 ($\alpha = 1$)RTX 2080

Number of VPLs1K1M1000xVPL Generation0.1 ms2.5 ms25xHierarchy Construction7.0 ms32.0 ms4.5x

Settings:Graphics Card:Crytek Sponza at 1280 x 720 ($\alpha = 1$)RTX 2080

Number of VPLs	1K	10K	100K	1M
Render time (1 shadow/pixel)	10.1 ms	14.3 ms	18.4 ms	24.3 ms
Render time (4 shadows/pixel)	15.5 ms	22.4 ms	28.5 ms	37.0 ms

Results

Settings:Graphics Card:Crytek Sponza at 1280 x 720 ($\alpha = 1$)RTX 2080

Number of VPLs	1K	1M	1000x
Render time (1 shadow/pixel)	10.1 ms	24.3 ms	2.4x
Render time (4 shadows/pixel)	15.5 ms	37.0 ms	2.4x
	1.5x	1.5x	

Result (thumbnail)

Direct Illumination No Indirect Shadows

Render time: 1.2 ms

Render time: 2.5 ms

Render time: 11.2 ms

Render time: 18.4 ms

Render time: 15.9 ms

Render time: 28.5 ms

Render time: 27.4 ms

Render time: 3.5 ms

Render time: 9.6 ms

Render time: 10.9 ms

Render time: 19.0 ms

Render time: 31.6 ms

Render time: 16.1 ms

Render time: 28.0 ms

Render time: 36.8 ms

Render time: 45.6 ms

Crytek Sponza (direct lighting)

1.2ms

Crytek Sponza (no indirect shadows)

11.2ms

Crytek Sponza (1 shadow sample)

18.4ms

Crytek Sponza (4 shadow samples)

28.5ms

Crytek Sponza (1 shadow sample)

18.4ms

Crytek Sponza (4 shadow samples)

28.5ms
Buddha (direct lighting)

Buddha (no indirect shadow)

Buddha (1 shadow sample)

Buddha (4 shadow samples)

Buddha (1 shadow sample)

Buddha (4 shadow samples)

Bistro (direct lighting)

Bistro (no indirect shadow)

10.9ms

H

Bistro (1 shadow sample)

19.0ms

17

Bistro (4 shadow samples)

31.6ms

1

Bistro (1 shadow sample)

19.0ms

Bistro (4 shadow samples)

31.6ms

San Miguel (direct lighting)

16.1ms

A VENERALLY

San Miguel (no indirect shadow)

QU

P. M. S. MILLIN

TISI

28.0ms

OPP

82

6

San Miguel (1 shadow sample)

Stud.

E & STANLIN

3

36.8ms

San Miguel (4 shadow samples)

SIMPL

CONTRACT.

CIE

45.6ms

San Miguel (1 shadow sample)

Brun M 21

3

36.8ms

San Miguel (4 shadow samples)

ATTOR M 21

CIE

45.6ms

Interleaved Sampling

[Keller and Heidrich 2001, Wald et al. 2002, Segovia et al. 2006b]

[Segovia et al. 2006b]

Interleaved Sampling

[Keller and Heidrich 2001, Wald et al. 2002, Segovia et al. 2006b]

[Segovia et al. 2006b]

Interleaved Sampling

[Keller and Heidrich 2001, Wald et al. 2002, Segovia et al. 2006b]

(a) No interleaved sampling Render time: 30.2 ms (b) 2 × 2 interleaved sampling Render time: 15.2 ms (c) 4 × 4 interleaved sampling Render time: 10.1 ms

Settings: Crytek Sponza at 1280 x 720 ($\alpha = 1$), 100K VPLs

(a) VXGI Render time: 21 ms **(b)** 4 × 4 *interleaved samp. Render time: 15 ms*

(c) No interleaved samp. Render time: 93 ms (d) Path Tracing Reference Render time: 2 hours

Our Method

(a) VXGI Render time: 21 ms **(b)** 4×4 interleaved samp. Render time: <u>15 ms</u>

(c) No interleaved samp. Render time: 93 ms (d) Path Tracing Reference Render time: 2 hours

Our Method

- We provide a real-time many-lights solution
- Our method can be used for real-time global illumination with VPLs

• Future Work: dynamic hierarchy update

Paper, code and video available on:

https://dqlin.xyz/pubs/2019-i3d-LGH/

Email: daqi@cs.utah.edu

Real-Time Rendering with Lighting Grid Hierarchy

I3D 2019