
Lighting Grid Hierarchy
Real-Time Rendering with

Daqi Lin & Cem Yuksel

University of Utah

I3D 2019

Presenter
Presentation Notes
Hello everyone, I’m Daqi Lin, a PhD student from University of Utah. Today I’m going to introduce a method that renders shadowed illumination from one million virtual point lights in real-time. It’s a collaboration between me and my advisor Cem Yuksel.

Direct illumination only

Presenter
Presentation Notes
Now you are seeing the Crytek Sponza scene with only direct illumination.

Our method (estimate global illumation from 1 million VPLs) 37 ms

Presenter
Presentation Notes
Here’s the same scene rendered using our method on RTX 2080. Our method estimates global illumination from 1 million virtual point lights in only 37ms.

Our method (estimate global illumation from 1 million VPLs, interleaved sampling) 12 ms

Presenter
Presentation Notes
Our method can be further accelerated by combining with interleaved sampling. The render time drops to 12 ms and the quality is similar.

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Our method is an extension on the recently introduced lighting grid hierarchy method, which was originally developed for rendering explosions by representing their illumination using many point lights.

While the original lighting grid hierarchy greatly accelerates offline rendering, we make the it suitable for real time rendering on GPU.

As a result, our method provides a solution to the many-lights problem in the real-time context.

Many-lights Problem

• Rendering with many lights

[Image source: https://80.lv/articles/the-future-of-real-time-rendering-with-lumberyard/]

Presenter
Presentation Notes
In computer graphics, it’s very common to have many lights in a scene.

And the many-lights problem concerns about efficiently compute the contribution from a large number of lights.

https://80.lv/articles/the-future-of-real-time-rendering-with-lumberyard/

Many-lights Problem

• Rendering with many lights
• Instant Radiosity [Keller 1997]

Presenter
Presentation Notes
The many lights problem received more attention after the instant radiosity method was introduced, because using this method, we can compute global illumination with many virtual lights.

Many-lights Problem

• Rendering with many lights
• Instant Radiosity [Keller 1997]

[Image source: Ivo Boyadzhiev and Kevin Matzen Presentation of Instant Radiosity at Cornell CS6630 Spring 2012]

VPLs

Presenter
Presentation Notes
It work like this. First, rays are traced from the light sources

Many-lights Problem

• Rendering with many lights
• Instant Radiosity [Keller 1997]

[Image source: Ivo Boyadzhiev and Kevin Matzen Presentation of Instant Radiosity at Cornell CS6630 Spring 2012]

VPLs

Presenter
Presentation Notes
and the path vertices are recorded as virtual point lights, or VPLs, with incoming flux and necessary surface information stored.

Many-lights Problem

• Rendering with many lights
• Instant Radiosity [Keller 1997]

[Image source: Ivo Boyadzhiev and Kevin Matzen Presentation of Instant Radiosity at Cornell CS6630 Spring 2012]

VPLs

Presenter
Presentation Notes
Then, these VPLs can be directly used to illuminate the scene

Many-lights Problem

• Rendering with many lights
• Instant Radiosity [Keller 1997]

[Image source: Ivo Boyadzhiev and Kevin Matzen Presentation of Instant Radiosity at Cornell CS6630 Spring 2012]

VPLs

Presenter
Presentation Notes
which gives a quick and noise-free approximation of global illumination.

For a small scene like Cornell box, a few hundreds of VPLs can give reasonably good quality diffuse GI.

However a lot more VPLs are required for reducing the bias, or rendering more complex scenes.

Many-lights Problem

• Rendering with many lights
• Instant Radiosity [Keller 1997]

– Only efficient if VPL count is small

Presenter
Presentation Notes
But because instant radiosity gather the lighting contribution one by one from VPLs, it is only efficient for a small number of VPLs

Many-lights Problem

Lightcuts
[Walter et al. 2005]

Matrix Row-Column Sampling
[Hašan et al. 2007]

• Offline Methods

Presenter
Presentation Notes
To reduce the rendering cost of large numbers of VPLs, people have developed many clever approximation methods. For example, lightcuts and matrix row-column sampling. These methods greatly accelerates offline rendering of many lights.

And they produce images with comparable qualities tens to hundreds times faster than the brute force approach used in the instant radiosity.

Many-lights Problem

Lightcuts
[Walter et al. 2005]

Matrix Row-Column Sampling
[Hašan et al. 2007]

• Offline Methods (temporally unstable)

Presenter
Presentation Notes
But a problem is that these methods are temporally unstable.

Many-lights Problem

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

• Offline Methods (temporally stable)

Presenter
Presentation Notes
Different from previous methods, the lighting grid hierarchy method produces temporally stable lighting approximation.

But so far these methods only work for offline rendering. What we want to achieve is real time rendering of large numbers of lights. And here are some real-time methods.

• Real-Time Methods

Clustered Shading [Olsson et al. 2012]

Many-lights Problem

Presenter
Presentation Notes
Clustered shading is the first method that presented real-time rendering performance with one million point lights;

• Real-Time Methods

Clustered Shading [Olsson et al. 2012] VPL (with global influence)

Many-lights Problem

Presenter
Presentation Notes
however, it assumes local illumination. And therefore it is not suitable for VPLs which have global influence.

• Real-Time Methods

Forward light cuts [Laurent et al. 2016]

Many-lights Problem

Presenter
Presentation Notes
Forward light cuts, can compute the illumination of millions VPLs in real-time

• Real-Time Methods

Forward light cuts [Laurent et al. 2016] VPL Shadows

Many-lights Problem

Presenter
Presentation Notes
, but this method is limited to unshadowed VPLs.

Real Time Rendering With Lighting Grid Hierarchy

• Ours
– A large number of lights
– VPL (with global Influence)
– VPL Shadows

Real-time solution to many-lights
Real time global illumination with VPLs

Presenter
Presentation Notes
Unlike the previous two methods, our method can compute lighting from a large number of lights in real-time with global influence and with shadows.

As a result, by rendering a large number of virtual point lights we provide a real-time solution for high-quality global illumination. Notice that our method can also be used to render general point lights.

We’ll first introduce the backbone of our method, lighting grid hierarchy.

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

𝕊𝕊0 (VPLs)

Presenter
Presentation Notes
For a closer look, let’s go through this example of building a lighting grid hierarchy from virtual point lights. The lighting grid hierarchy consists of multiple levels.

First, the VPLs themselves form the S_0, the zero-th level.

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Then, a 3D grid is placed to encapsulate all the VPLs. The grid vertices are circled in red.

The grid spacing is computed by subdividing a grid with single cell to the user-defined number of grid levels.

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
The VPLs will then distribute their contribution to the eight neighboring grid vertices using trilinear weights.

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
The VPLs will then distribute their contribution to the eight neighboring grid vertices using trilinear weights.

Grid Lights

𝕊𝕊1

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
After all VPLs distribute their contribution to the grid, a grid light is generated from each grid vertex with non-zero accumulated contribution, and placed at the average position of the surrounding VPLs, which is called the illumination center. The intensity is accumulated from the surrounding VPLs.

𝕊𝕊2

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Similarly, by placing a grid with cells with twice the size in all dimensions, we can build the second level, S_2.

𝕊𝕊2

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

𝕊𝕊2

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Again we let the VPLs distribute their contribution to surrounding grid vertices.

𝕊𝕊2

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Again we let the VPLs distribute their contribution to surrounding grid vertices.

𝕊𝕊2

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Again we let the VPLs distribute their contribution to surrounding grid vertices.

𝕊𝕊2

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Again we let the VPLs distribute their contribution to surrounding grid vertices.

𝕊𝕊2

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Again we let the VPLs distribute their contribution to surrounding grid vertices.

𝕊𝕊2 𝕊𝕊3

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

Presenter
Presentation Notes
Using the same process we can generate level two grid lights and everything is the same for level three.

In this case, level three is the highest level, which simply has a single cell with 8 vertices.

• Blending Functions (larger 𝛼𝛼 improves accuracy)

𝑟𝑟ℓ = 𝛼𝛼ℎℓ

𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4

𝐵𝐵1 𝐵𝐵2 𝐵𝐵3

0

1

𝑑𝑑

𝐵𝐵0

𝑟𝑟0

Lighting Grid Hierarchy [Yuksel & Yuksel 2017]

ℎ1 ℎ2 ℎ3ℎ0 = ℎ1/2

Grid SpacingInfluence Radius

Presenter
Presentation Notes
As the level increases, the grid spacing h_l will double every successive level. So does the influence radius r_l of level l grid lights.

We use blending functions to smoothly transition between levels such that higher levels will only light far distance surfaces and lower levels will light near distance surfaces.

The influence radius is proportional to the grid spacing by a constant alpha. Larger alpha will make lower levels influence a wider range, and as a result, improves accuracy of lighting approximation.

That’s all about lighting grid hierarchy.

Our Algorithm

Presenter
Presentation Notes
In our paper, we extend the lighting grid hierarchy method for real-time rendering. This can be decomposed to three steps.

First, we will introduce a method to build lighting grid hierarchy on GPU in real-time.

Second, we will introduce how we efficiently use deferred rendering for evaluating the unshadowed lighting from the lighting grid hierarchy.

Third, we will introduce a new importance sampling method that allows us to trace only a few shadow rays per pixel using RTX to estimate the shadow from the lighting grid hierarchy in real time.

Our Algorithm

Presenter
Presentation Notes
Let’s look at the first step, parallel construction of LGH on GPU.

GPU Construction of LGH

• Scatter VPLs to all levels Thread Contention!

𝕊𝕊1 𝕊𝕊2

Presenter
Presentation Notes
A naïve way to construct the lighting grid hierarchy on GPU is to distribute the contribution of VPLs to all grid levels using scattering.

While it is okay for lower levels, it is problematic for higher levels due to frequent thread contention. Since writing must be protected by atomic operations, it is very expensive when many VPLs write to the same grid vertex.

GPU Construction of LGH

• Gather Need to search for surrounding VPLs!

𝕊𝕊1 𝕊𝕊2

Presenter
Presentation Notes
Using gathering avoids atomic operations, but requires search operations to find the corresponding lights which can still be expensive.

GPU Construction of LGH

• Scatter VPLs to 𝕊𝕊1

𝕊𝕊1

Presenter
Presentation Notes
Our method split the construction process into two steps.

In the first step we scatter the contributions of each input light to the first grid level S_1.

GPU Construction of LGH

• Scatter VPLs to , gather from for upper levels𝕊𝕊1 𝕊𝕊1

𝕊𝕊1 𝕊𝕊2

Presenter
Presentation Notes
In the second step we build the rest of the levels by gathering from S_1. Because the grid lights on S_1 are already ordered in a grid, we avoid expensive search operations

GPU Construction of LGH

• Lighting grid hierarchy build time for 100k VPLs

174x faster

Presenter
Presentation Notes
And the result is great.

Compared to the scatter approach, our gather method is more than two orders of magnitude faster

GPU Construction of LGH

• Lighting grid hierarchy build time for 100k VPLs

1042x faster

Presenter
Presentation Notes
The reason for the speedup is that we avoid the expensive scattering operation that becomes extremely slow when going to higher levels.

As you can see, to build the highest level our gather approach is more than 1000 times faster than the naïve scatter approach.

Our Algorithm

Presenter
Presentation Notes
Our second step is lighting computation. This step is built upon a deferred renderer.

Lighting Computation

• Generate VPLs from light sources

VPLs

Presenter
Presentation Notes
Given a set of virtual point lights, generated from the light sources

Lighting Computation

• Build Lighting Grid Hierarchy

VPLs
𝕊𝕊0 (VPLs) 𝕊𝕊1 𝕊𝕊2 𝕊𝕊3

Presenter
Presentation Notes
we build the lighting grid hierarchy using our parallel construction algorithm

Lighting Computation

• Rasterize lights as (coarse) spheres in a deferred
renderer

LGH

Instanced Draw Call

Presenter
Presentation Notes
The last step of the construction merges lights in all levels to a single buffer. Notice that only grid vertices with non-zero contribution are used.

And we use this buffer to rasterize the lights in the lighting grid hierarchy as coarse spheres with radius equal to the maximum range of its blending function.

Lighting Computation

• Splat illumination attenuated by the blending function

Instanced Draw Call

Presenter
Presentation Notes
These spheres are then used as proxy geometry in the lighting step of deferred rendering. The fragments produced by these light spheres are additively blended.

Lighting Computation

• Splat illumination attenuated by the blending function

Instanced Draw Call

Blending function

Unshadowed indirect illumination!

Less contribution More contribution𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4

𝐵𝐵1 𝐵𝐵2 𝐵𝐵3

0

1

𝑑𝑑

𝐵𝐵0

𝑟𝑟0

Presenter
Presentation Notes
But each fragment will be attenuated by the blending function. If the blending function is zero, the fragment is directly discarded.

Otherwise the lighting is attenuated accordingly, as shown in this visualization, where the brightest yellow rings represent the peak contribution defined by the blending functions.

The result is unshadowed lighting from the lighting grid hierarchy. Shadows are computed separately which will be introduced shortly.

Lighting Computation

Presenter
Presentation Notes
Using our lighting computation method, the fragments blended per pixel, which we call overdraw here, only grows loga’rithmically with the number of source VPLs.

As the number of VPLs grows exponentially from a thousand to a million, the average overdraw only grows from 135 to 254 and the render time only grows from 15ms to 37ms.

Our Algorithm

Presenter
Presentation Notes
Now let me introduce the third step, shadow sampling.

Shadow Sampling
• Send shadow rays to hundreds of lights / pixel !

Presenter
Presentation Notes
As the name suggests we need to sample the shadows. The reason is that although our method reduce the amount of lighting computation from a million lights per pixel to a few hundreds light per pixel,

we still cannot afford to send shadow rays to hundreds of lights per pixel in every frame, even on RTX.

Shadow Sampling
• Send shadow rays to hundreds of lights / pixel !
• Small number of shadow samples & Importance sampling

Presenter
Presentation Notes
Therefore we need to find a way to pick a small number of shadow samples from the lights. And it needs to be importance sampling.

Shadow Sampling

• Shadow Ratio Estimator [Heitz et al. 2018]

Presenter
Presentation Notes
By sampling and denoising, we can combine the stochastic shadow ratio with with the previous unshadowed lighting to produce the final shadowed lighting.
This shadow ratio estimation method was proposed by Heitz et al. in the last year’s i3D.

But unlike sampling the area light as shown in this figure, importance sampling the lighting grid hierarchy is not as easy.

Therefore we came up with our own importance sampling algorithm.

Shadow Sampling

• Our method: pick 𝑘𝑘 shadow samples with desired
probabilities using a fixed memory footprint

Presenter
Presentation Notes
Our method is to pick a small number of k shadow samples per pixel during the lighting computation. In our results, k is less than 4. The good thing is that it uses a fixed memory footprint. Each pixel only stores k shadow samples in the entire sampling process.

For an example of picking one shadow sample per pixel, it works like this.

Shadow Sampling

• Our method: pick 𝑘𝑘 shadow samples with desired
probabilities using a fixed memory footprint

Each fragment samples
a position in the point cloud of
grid light 𝑖𝑖

grid light 𝑖𝑖

Presenter
Presentation Notes
During the lighting computation, each fragment rasterized by the sphere of grid light i, samples a position in the point cloud the grid light represents.

Shadow Sampling

• Our method: pick 𝑘𝑘 shadow samples with desired
probabilities using a fixed memory footprint

The sampled light overwrites
the shadow sample
with a probability related
to 𝑓𝑓𝑖𝑖 (its P.D.F.) and ∑𝑗𝑗=0𝑖𝑖 𝑓𝑓𝑗𝑗
(the sum of previous P.D.F.)

grid light 𝑖𝑖

Presenter
Presentation Notes
This sampled light decides whether to overwrite the shadow sample stored with the pixel with a probability related to its probability distribution function or PDF and the sum of all previous PDFs. The detailed formula can be found in our paper.

Shadow Sampling

• Our method: pick 𝑘𝑘 shadow samples with desired
probabilities using a fixed memory footprint

Result: Light 𝑖𝑖 (P.D.F. 𝑓𝑓𝑖𝑖) picked with desired probability 𝑓𝑓𝑖𝑖
∑𝑗𝑗=0
𝑛𝑛 𝑓𝑓𝑗𝑗

Presenter
Presentation Notes
The result is that the light i is picked with the desired probability.

Although we only show the example of picking one shadow sample per pixel, picking k shadow samples is the exact same process done k times.

Presenter
Presentation Notes
Here we show the shadowed indirect illumination sampled without importance sampling with one and four samples per pixel. They are extremely noisy.

Presenter
Presentation Notes
And here are the results of our importance sampling algorithm. Notice we produce a much reasonable result even using only one sample per pixel. Using four samples per pixel improves the result.

Presenter
Presentation Notes
Here are the results after filtering. Without importance sampling, the results cannot be used at all. The result produced by our importance sampling algorithm can be blended with the unshadowed lighting to give the full solution.

Our Algorithm

Presenter
Presentation Notes
And that finishes our algorithm. Now let’s look at the performance.

Results
Settings:
Crytek Sponza at 1280 x 720 (𝛼𝛼 = 1)

Graphics Card:
RTX 2080

Presenter
Presentation Notes
Here’s the VPL generation time and hierarchy construction time for 1K, 10K, 100K and 1M VPLs in this particular setting. We use RTX 2080 for all results. The VPLs are generated using DXR ray tracing.

Results
Settings:
Crytek Sponza at 1280 x 720 (𝛼𝛼 = 1)

Graphics Card:
RTX 2080

1000x

25x

4.5x

Presenter
Presentation Notes
As the number of VPLs increases 1000 times from 1000 to 1M, the VPL generation time only increases 25 times.

Although the hierarchy construction time is longer than VPL generation, it increases less. When number of VPLs grows 1000 times larger the construction time only increases 4.5 times.

We need to add the time for these two processes to the frame time if the VPL data change. For example, when the lighting condition changes and the VPLs are regenerated.

Results
Settings:
Crytek Sponza at 1280 x 720 (𝛼𝛼 = 1)

Graphics Card:
RTX 2080

Presenter
Presentation Notes
But if the VPL data do not change, we only need to consider the render time for the frame time. Here we compare the render time with 1 and 4 shadow samples per pixel.

Results
Settings:
Crytek Sponza at 1280 x 720 (𝛼𝛼 = 1)

Graphics Card:
RTX 2080

2.4x

2.4x
1000x

1.5x 1.5x

Presenter
Presentation Notes
When number of VPLs grows 1000 times larger, both render times only grows 2.4 times. Increasing shadow samples from 1 to 4 increases the render time by about 50%, but it significantly reduces the shadow sampling noise.

Result (thumbnail)

Presenter
Presentation Notes
Now we will show more scenes to see how the render result improves when going from direct lighting only to 4 shadow samples per pixel. All following scenes use 100K source VPLs.

Crytek Sponza (direct lighting)

1.2ms

Crytek Sponza (no indirect shadows)

11.2ms

Crytek Sponza (1 shadow sample)

18.4ms

Crytek Sponza (4 shadow samples)

28.5ms

Crytek Sponza (1 shadow sample)

18.4ms

Crytek Sponza (4 shadow samples)

28.5ms

Buddha (direct lighting)

2.5ms

Buddha (no indirect shadow)

9.6ms

Buddha (1 shadow sample)

15.9ms

Buddha (4 shadow samples)

27.4ms

Buddha (1 shadow sample)

15.9ms

Buddha (4 shadow samples)

27.4ms

Bistro (direct lighting)

3.5ms

Bistro (no indirect shadow)

10.9ms

Bistro (1 shadow sample)

19.0ms

Bistro (4 shadow samples)

31.6ms

Bistro (1 shadow sample)

19.0ms

Bistro (4 shadow samples)

31.6ms

Results San Miguel (direct lighting)

16.1ms

San Miguel (no indirect shadow)

28.0ms

San Miguel (1 shadow sample)

36.8ms

San Miguel (4 shadow samples)

45.6ms

San Miguel (1 shadow sample)

36.8ms

San Miguel (4 shadow samples)

45.6ms

Interleaved Sampling

[Segovia et al. 2006b]

[Keller and Heidrich 2001, Wald et al. 2002, Segovia et al. 2006b]

Presenter
Presentation Notes
In fact, we can make our method even faster. The key is reducing the overdraw,

to do this, we can apply interleaved sampling by only sampling from a subset of lights for every pixel in a kxk pixel group.

The illustration here shows that the pixels are assigned into 4x4 groups. Every pixel in the 4x4 group will be assigned to one of the 4x4 tiles. Each tile will compute lighting from 1/16 of all lights.

[Segovia et al. 2006b]

Discontinuity Map
Filter with

Interleaved Sampling
[Keller and Heidrich 2001, Wald et al. 2002, Segovia et al. 2006b]

Presenter
Presentation Notes
The lighting results from the tiles will then be re-interleaved. After applying a edge-stopping filter we can get a pretty close result to the result that uses all lights.

Settings:
Crytek Sponza at 1280 x 720 (𝛼𝛼 = 1), 100K VPLs

Interleaved Sampling
[Keller and Heidrich 2001, Wald et al. 2002, Segovia et al. 2006b]

Presenter
Presentation Notes
By applying interleaved sampling in this way, we will have some additional smoothing in the final result due an additional filter used, but we get substantial improvements in render time.

Without interleaved sampling the render time is 30.2 ms, with 4x4 interleaved sampling it goes down 10.1 ms.

Comparison
• We compare the results of our method to the NVIDIA VXGI

implementation of voxel cone tracing [Crassin et al. 2011]

Our Method

𝛼𝛼 = 1.5 𝛼𝛼 = 2

Presenter
Presentation Notes
The last thing,
when using as an real-time global illumination method, an advantage of our method over the voxel cone tracing is that it more faithfully reproduces the indirect shadows of diffuse reflection.

We compare the result of our method with the NVIDIA VXGI implementation of voxel cone tracing and found that when using an appropriate blending parameter and interleaved sampling, our method produces a closer result to the path tracing reference

Comparison
• We compare the results of our method to the NVIDIA VXGI

implementation of voxel cone tracing [Crassin et al. 2011]

Our Method

𝛼𝛼 = 1.5 𝛼𝛼 = 2

Presenter
Presentation Notes
in a shorter time

Comparison
• We compare the results of our method to the NVIDIA VXGI

implementation of voxel cone tracing [Crassin et al. 2011]

Our Method

𝛼𝛼 = 1.5 𝛼𝛼 = 2

Presenter
Presentation Notes
especially the indirect shadows behind the draping cloth

Comparison
• We compare the results of our method to the NVIDIA VXGI

implementation of voxel cone tracing [Crassin et al. 2011]

Our Method

𝛼𝛼 = 1.5 𝛼𝛼 = 2

Presenter
Presentation Notes
and over the center arch.

Conclusion

• We provide a real-time many-lights solution
• Our method can be used for real-time global

illumination with VPLs

• Future Work: dynamic hierarchy update

Presenter
Presentation Notes
To sum it up, our method provides an effective solution to the many-lights problem for real-time rendering. Because we can render shadowed lighting from large numbers of virtual point lights, we provide a real-time solution for global illumination.

An interesting future research direction is to dynamically update the lighting grid hierarchy instead of rebuilding it. If this is solved, we can significantly reduce the initialization cost when there are only partial changes in the VPL data.

Thank you

Paper, code and video available on:
• https://dqlin.xyz/pubs/2019-i3d-LGH/

Email: daqi@cs.utah.edu

Presenter
Presentation Notes
Thank you for listening.

https://dqlin.xyz/pubs/2019-i3d-LGH/

I3D 2019

Lighting Grid Hierarchy
Real-Time Rendering with

	 Lighting Grid Hierarchy
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Many-lights Problem
	Real Time Rendering With Lighting Grid Hierarchy
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Lighting Grid Hierarchy [Yuksel & Yuksel 2017]
	Our Algorithm
	Our Algorithm
	GPU Construction of LGH
	GPU Construction of LGH
	GPU Construction of LGH
	GPU Construction of LGH
	GPU Construction of LGH
	GPU Construction of LGH
	Our Algorithm
	Lighting Computation
	Lighting Computation
	Lighting Computation
	Lighting Computation
	Lighting Computation
	Lighting Computation
	Our Algorithm
	Shadow Sampling
	Shadow Sampling
	Shadow Sampling
	Shadow Sampling
	Shadow Sampling
	Shadow Sampling
	Shadow Sampling
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Our Algorithm
	Results
	Results
	Results
	Results
	Result (thumbnail)
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Results
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Interleaved Sampling
	Interleaved Sampling
	Interleaved Sampling
	Comparison
	Comparison
	Comparison
	Comparison
	Conclusion
	Thank you
	 Lighting Grid Hierarchy

