
Supplemental Document for ReSTIR BDPT
TREVOR HEDSTROM, University of California San Diego, USA
MARKUS KETTUNEN, NVIDIA, Finland
DAQI LIN, NVIDIA, USA
CHRIS WYMAN, NVIDIA, USA
TZU-MAO LI, University of California San Diego, USA

ACM Reference Format:
Trevor Hedstrom, Markus Kettunen, Daqi Lin, Chris Wyman, and Tzu-Mao
Li. 2025. Supplemental Document for ReSTIR BDPT. ACM Trans. Graph. 0, 0,
Article 0 (2025), 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 RECURSIVE MIS WEIGHTS FOR RECONNECTION
In this section, we derive a formula for Georgiev et al.; van Antwer-
pen’s [2012; 2011] recursive MIS weights that is more suitable for
our ReSTIR BDPT algorithm. We first prove a non-recursive form
for Equation 6; that will be Equation 7. Then, we present new
cached quantities accessible during our path sampling and reuse
(Section 1.4), and give Equation 6 a new expression using these
quantities (Section 1.5).

1.1 Notation
The quantity −→𝑝 𝑖 denotes the area-measure probability density of
sampling the vertex 𝑥𝑖 from the vertex 𝑥𝑖−1 while tracing from
the camera. Similarly, the quantity←−𝑝 𝑖 denotes the area-measure
probability density of sampling vertex 𝑥𝑖 from the vertex 𝑥𝑖+1 while
tracing from the light. The area-measure densities are calculated
using the geometry terms as

−→
𝑝 𝑖 =

−→
𝑝 𝜎
𝑖 ·
−→𝑔 𝑖 (1)

←−
𝑝 𝑖 =

←−
𝑝 𝜎
𝑖 ·
←−𝑔 𝑖 , (2)

where

−→
𝑝 𝜎
𝑖 =

{
𝑝𝜎 (𝑥𝑖−2 → 𝑥𝑖−1 → 𝑥𝑖) 𝑥𝑖−1 nondelta
𝑝delta (𝑥𝑖−1 → 𝑥𝑖) otherwise

(3)

←−
𝑝 𝜎
𝑖 =

{
𝑝𝜎 (𝑥𝑖+2 → 𝑥𝑖+1 → 𝑥𝑖) 𝑥𝑖+1 nondelta
𝑝delta (𝑥𝑖+1 → 𝑥𝑖) otherwise.

(4)

Here, 𝑝𝜎 (𝑥 → 𝑥 ′ → 𝑥 ′′) is the solid-angle probability density
of sampling the vertex 𝑥 ′′ from 𝑥 ′, following Veach’s three-point
notation [Veach 1997], and 𝑝delta is the probability of selecting the
delta component of the material, or 1 for a delta-only material.

Authors’ addresses: Trevor Hedstrom, University of California San Diego, USA,
tjhedstr@ucsd.edu; Markus Kettunen, NVIDIA, Finland, mkettunen@nvidia.com; Daqi
Lin, NVIDIA, USA, daqil@nvidia.com; Chris Wyman, NVIDIA, USA, chris.wyman@
acm.org; Tzu-Mao Li, University of California San Diego, USA, tzli@ucsd.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2025 Association for Computing Machinery.
0730-0301/2025/0-ART0 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

This formulation allows us to manipulate the −→𝑝 𝑖 and←−𝑝 𝑖 quantities
without separate cases for delta PDFs, since −→𝑝 𝜎

𝑖
and ←−𝑝 𝜎

𝑖
do not

contain deltas.

1.2 Recursive MIS weights
The recursive MIS algorithm computes recursive partial MIS quanti-
ties at each subpath vertex. For camera subpaths, these quantities
are computed with

𝑑
p
𝑖
= [𝑥𝑖−1 nondelta]

(
1
−→
𝑝𝑖

)𝛽
, (5)

𝑑VC
𝑖 =

(←−−−𝑔𝑖−1
−→
𝑝𝑖

)𝛽 (
[𝑥𝑖−1 nondelta] 𝑑p

𝑖−1 +
(←−
𝑝 𝜎
𝑖−2

)𝛽
𝑑VC
𝑖−1

)
. (6)

where the bracket notation evaluates to 1 if the expression inside
the bracket is true, or 0 otherwise. These quantities are computed
and stored with the camera subpath 𝑧. The full MIS weight 𝜔𝑠,𝑡 is
then recovered using the recursive quantities from the camera and
light subpath endpoints 𝑦𝑠−1 and 𝑧𝑡−1 as described in Section 6.1.

After reconnecting to the reconnection vertex 𝑧𝑟 , we can compute
𝑑
p
𝑟 and 𝑑VC

𝑟 using Equation 5 and Equation 6. In order to compute the
full MIS weight, we require𝑑p

𝑡−1 and𝑑
VC
𝑡−1 from the end of the camera

subpath, which can be an arbitrary number of vertices after the
reconnection vertex 𝑧𝑟 . Calculating 𝑑VC

𝑡−1 using Equation 6 requires
visiting all vertices between 𝑧𝑟 and 𝑧𝑡−1. Instead, we derive an
algorithm to compute the recursive quantity 𝑑VC

𝑡−1 from 𝑑VC
𝑟 , without

visiting vertices between 𝑧𝑟 and 𝑧𝑡−1.

1.3 Non-recursive 𝑑VC
𝑡−1

We first prove a non-recursive expression for 𝑑VC
𝑡−1. We define

𝑑VC
𝑟+𝑛 =

(←−𝑔 𝑟+𝑛−1
−→
𝑝 𝑟+𝑛

)𝛽 ©­­­­­­­«

𝑟+𝑛−1∑︁
𝑖=𝑟

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑟+𝑛−2∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑟+𝑛−2∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
ª®®®®®®®¬
, (7)

where𝑛 = 𝑡−1−𝑟 counts the number of camera subpath vertices after
the reconnection vertex, and prove by induction that 𝑑VC

𝑟+𝑛 = 𝑑VC
𝑟+𝑛

for 𝑛 ≥ 1.

1.3.1 Proof.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

0:2 • Trevor Hedstrom, Markus Kettunen, Daqi Lin, Chris Wyman, and Tzu-Mao Li

Case 𝑛 = 1.

𝑑VC
𝑟+1 =

(←−𝑔 𝑟
−→
𝑝 𝑟+1

)𝛽 ©­­­­­­­«

𝑟∑︁
𝑖=𝑟

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑟−1∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽

+
(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

�
�
�
�
��

𝑟−1∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
ª®®®®®®®¬

=

(←−𝑔 𝑟
−→
𝑝 𝑟+1

)𝛽 ©­­­­­«
[𝑥𝑟 nondelta] 𝑑p

𝑟

�
�
�
�
��𝑟−1∏

𝑗=𝑟

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

ª®®®®®¬
=

(←−𝑔 𝑟
−→
𝑝 𝑟+1

)𝛽 (
[𝑥𝑟 nondelta] 𝑑p

𝑟 +
(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

)
= 𝑑VC

𝑟+1 .

Case 𝑛 = 𝑘 + 1. We start with the non-recursive form of 𝑑VC
𝑟+𝑘+1,

𝑑VC
𝑟+𝑘+1 =

(←−−−𝑔𝑟+𝑘
−−−−−→
𝑝𝑟+𝑘+1

)𝛽 (
[𝑥𝑟+𝑘 nondelta] 𝑑p

𝑟+𝑘 +
(←−
𝑝 𝜎
𝑟+𝑘−1

)𝛽
𝑑VC
𝑟+𝑘

)
.

Then, assuming 𝑑VC
𝑟+𝑘 = 𝑑VC

𝑟+𝑘 ,

𝑑VC
𝑟+𝑘+1 =

(←−−−𝑔𝑟+𝑘
−−−−−→
𝑝𝑟+𝑘+1

)𝛽
©­­­­­­­­­­­­­­­­«

[𝑥𝑟+𝑘 nondelta] 𝑑p
𝑟+𝑘

+
(←−
𝑝 𝜎
𝑟+𝑘−1

)𝛽 (←−𝑔 𝑟+𝑘−1
−→
𝑝 𝑟+𝑘

)𝛽
·

©­­­­­­­«

𝑟+𝑘−1∑︁
𝑖=𝑟

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑟+𝑘−2∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑟+𝑘−2∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
ª®®®®®®®¬

ª®®®®®®®®®®®®®®®®¬

.

We simplify←−𝑝 𝜎
𝑟+𝑘−1 ·

←−𝑔 𝑟+𝑘−1 =
←−
𝑝 𝑟+𝑘−1 by Equation 2 to get

=

(←−−−𝑔𝑟+𝑘
−−−−−→
𝑝𝑟+𝑘+1

)𝛽 ©­­­­­­­­­«

[𝑥𝑟+𝑘 nondelta] 𝑑p
𝑟+𝑘

+
(←−
𝑝 𝑟+𝑘−1
−→
𝑝 𝑟+𝑘

)𝛽 𝑟+𝑘−1∑︁
𝑖=𝑟

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑟+𝑘−2∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
+

(←−
𝑝 𝑟+𝑘−1
−→
𝑝 𝑟+𝑘

)𝛽 (←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑟+𝑘−2∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
ª®®®®®®®®®¬
.

We now move the ratio
(←−
𝑝 𝑟+𝑘−1/−→𝑝 𝑟+𝑘

)𝛽
into the products, which

increases their upper bound to 𝑟 + 𝑘 − 1:

=

(←−−−𝑔𝑟+𝑘
−−−−−→
𝑝𝑟+𝑘+1

)𝛽 ©­­­­­­­­­«

[𝑥𝑟+𝑘 nondelta] 𝑑p
𝑟+𝑘

+
𝑟+𝑘−1∑︁
𝑖=𝑟

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑟+𝑘−1∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑟+𝑘−1∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
ª®®®®®®®®®¬
.

Next, we move the term [𝑥𝑟+𝑘 nondelta] 𝑑p
𝑟+𝑘 into the sum, which

increases its upper bound to 𝑟 + 𝑘 . This is possible because the
product is empty for 𝑗 = 𝑟 + 𝑘 , yielding

=

(←−−−𝑔𝑟+𝑘
−−−−−→
𝑝𝑟+𝑘+1

)𝛽 ©­­­­­­­«

𝑟+𝑘∑︁
𝑖=𝑟

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑟+𝑘−1∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑟+𝑘−1∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
ª®®®®®®®¬

= 𝑑VC
𝑟+𝑘+1 .

1.4 Additional quantities
Our algorithm works by computing and storing these extra quanti-
ties when the camera subpath is first sampled:

𝛾 =

(←−𝑔 𝑡−2
−→
𝑝 𝑡−1

)𝛽
, (8)

𝜆VC =

(←−
𝑝𝑟
−→𝑔 𝑟+1

)𝛽 𝑡−3∏
𝑖=𝑟+1

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
, (9)

𝜆P = [𝑥𝑟+1 nondelta]
𝑡−3∏
𝑖=𝑟+1

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
, (10)

𝜎 =

𝑡−2∑︁
𝑖=𝑟+2

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑡−3∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
. (11)

Next, we give a new formula for 𝑑VC
𝑡−1 using these cached quantities.

1.5 Computing 𝑑VC
𝑡−1

Case 𝑟 = 𝑡 − 1. If the reconnection vertex is the last vertex on the
camera subpath, then Equation 6 can be evaluated directly.

Case 𝑟 = 𝑡 −2. If the reconnection vertex is the second-to-last ver-
tex on the camera subpath, we rewrite Equation 6 using Equation 1
to separate the geometry term in the denominator:

𝑑VC
𝑡−1 =

(←−𝑔 𝑟
−→
𝑝 𝜎
𝑟+1
−→𝑔 𝑟+1

)𝛽 (
𝑑
p
𝑟 +

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

)
, (12)

In this case, [𝑥𝑟 nondelta] is always 1 since 𝑥𝑟 must be nondelta
for reconnection to occur. The quantities −→𝑝 𝜎

𝑟+1, 𝑑
p
𝑟 , and

←−
𝑝 𝜎
𝑟−1 are

computed during reconnection, and the remaining quantities are
cached during initial sampling.

Case 𝑟 < 𝑡 − 2. If the reconnection vertex is before the second-
to-last vertex on the camera subpath, we rewrite Equation 6 us-
ing eqs. (8) to (11)

𝑑VC
𝑡−1 = 𝛾

©­­­­­­«

(
1
−→
𝑝 𝜎
𝑟+1

)𝛽
𝜆VC

(
𝑑
p
𝑟 +

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

)
+

(
1
−→
𝑝 𝜎
𝑟+1

)𝛽 (
1
−→𝑔 𝑟+1

)𝛽
𝜆P + 𝜎

ª®®®®®®¬
, (13)

which we prove equal to 𝑑VC
𝑡−1 in the following.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2025.

Supplemental Document for ReSTIR BDPT • 0:3

1.5.1 Proof. We start by substituting 𝜆VC from Equation 9 into
Equation 13:

𝑑VC
𝑡−1 = 𝛾

©­­­­­­­«

(
1
−→
𝑝 𝜎
𝑟+1

)𝛽 
(←−

𝑝𝑟
−→𝑔 𝑟+1

)𝛽 𝑡−3∏
𝑖=𝑟+1

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽 
(
𝑑
p
𝑟 +

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

)
+

(
1
−→
𝑝 𝜎
𝑟+1

)𝛽 (
1
−→𝑔 𝑟+1

)𝛽
𝜆P + 𝜎

ª®®®®®®®¬
.

Combining factors and substituting −→𝑝 𝜎
𝑟+1 ·
−→𝑔 𝑟+1 =

−→
𝑝 𝑟+1 by Equa-

tion 1 yields

= 𝛾

©­­­­­­­«

(←−
𝑝𝑟
−→
𝑝 𝑟+1

)𝛽 ©­«
𝑡−3∏
𝑖=𝑟+1

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽ª®¬
(
𝑑
p
𝑟 +

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

)
+ 1(−→

𝑝 𝑟+1
)𝛽 𝜆P + 𝜎

ª®®®®®®®¬
.

We merge the ratio
(←−

𝑝𝑟
−→
𝑝 𝑟+1

)𝛽
into the product as 𝑖 = 𝑟 , giving

= 𝛾

©­­­­­­­«

©­«
𝑡−3∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽ª®¬
(
𝑑
p
𝑟 +

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

)
+ 1(−→

𝑝 𝑟+1
)𝛽 𝜆P + 𝜎

ª®®®®®®®¬
.

Expanding the parentheses now yields

= 𝛾

©­­­­­­«
𝑑
p
𝑟

𝑡−3∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑡−3∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
+ 1(−→

𝑝 𝑟+1
)𝛽 𝜆P + 𝜎

ª®®®®®®¬
.

We now substitute 𝛾 , 𝜆P, and 𝜎 (Equations 8, 10, 11) to reach

=

(←−𝑔 𝑡−2
−→
𝑝 𝑡−1

)𝛽
©­­­­­­­­­­­­­­«

𝑑
p
𝑟

𝑡−3∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑡−3∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
+ 1(−→

𝑝 𝑟+1
)𝛽 [𝑥𝑟+1 nondelta]

𝑡−3∏
𝑖=𝑟+1

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽

+
𝑡−2∑︁
𝑖=𝑟+2

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑡−3∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽

ª®®®®®®®®®®®®®®¬
.

Since the reconnection vertex 𝑥𝑟 and its predecessor 𝑥𝑟−1 must be
non-delta for reconnection to occur, we have [𝑥𝑟 nondelta] = 1, and
the first term becomes

𝑑
p
𝑟

𝑡−3∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
= [𝑥𝑟 nondelta] 𝑑p

𝑟

𝑡−3∏
𝑗=𝑟

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
,

i.e., term 𝑖 = 𝑟 in the bottom sum. Similarly, we have by Equation 5
1(−→

𝑝 𝑟+1
)𝛽 = [𝑥𝑟 nondelta]

1(−→
𝑝 𝑟+1

)𝛽 = 𝑑
p
𝑟+1,

𝑑VC
𝑡−1

𝑑VC𝑟

𝑧𝑟

𝑧𝑡−1

BDPT
Connection

Reconnection

Fig. 1. If 𝑟 = 𝑡 − 2, we only need to advance 𝑑VC
𝑟 by one bounce to recover

𝑑VC
𝑡−1.

so the middle term becomes term 𝑖 = 𝑟 +1 in the bottom sum. Hence,
we reach

𝑑VC
𝑡−1 =

(←−𝑔 𝑡−2
−→
𝑝 𝑡−1

)𝛽 ©­­­­­­­«

𝑡−2∑︁
𝑖=𝑟

[𝑥𝑖 nondelta] 𝑑p
𝑖

𝑡−3∏
𝑗=𝑖

(←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
+

(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC
𝑟

𝑡−3∏
𝑖=𝑟

(←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
ª®®®®®®®¬

= 𝑑VC
𝑟+𝑛 with 𝑛 = 𝑡 − 1 − 𝑟 .

2 BOUNDS ON ERROR FROM TECHNIQUE MIS REUSE
In the following, we show that the relative bias from reusing old
samples’ technique MIS weights is bounded by their relative error.
In our proposed method, we select an extended path 𝑌 = (𝑌, 𝜏)

with GRIS by resampling from𝑀 candidates 𝑋1, . . . , 𝑋𝑀 , with 𝑋𝑖 =

(𝑋𝑖 , 𝜏𝑖), according to resampling weights𝑤𝑖 . We then select a single
candidate 𝑋𝑧 and shift it into the target domain with shift map 𝑇𝑧 :

𝑌 = 𝑇𝑧 (𝑋𝑧), (14)

mapping 𝑋𝑧 from its domain Ω𝑧 to the target Ω with the shift
mapping corresponding to its sampling technique 𝜏𝑧 , retaining the
sampling technique:

𝑇𝑧 (𝑋𝑧) = (𝑇𝑧,𝜏𝑧 (𝑋𝑧), 𝜏𝑧). (15)

Once𝑌 is selected, the integral 𝐼 is estimated using theMIS-weighted
GRIS estimator ⟨𝐼 ⟩:

⟨𝐼 ⟩ = 𝜔𝜏 (𝑌) 𝑓 (𝑌)𝑊𝑌
. (16)

If wemodify the right side of Equation 16 to instead use the unshifted
candidate’s MIS weight 𝜔𝜏 (𝑋𝑧), we form a new estimator

⟨𝐼biased⟩ = 𝜔𝜏 (𝑋𝑧) 𝑓 (𝑌)𝑊𝑌

= 𝜔𝜏 (𝑇 −1
𝑧,𝜏 (𝑌)) 𝑓 (𝑌)𝑊𝑌

.
(17)

We first define the contribution error as the technique MIS weight
error scaled by the integrand:

𝑓 Δ𝑖 (𝑌) = 𝑓 (𝑌)
���𝜔𝜏 (𝑌) − 𝜔𝜏

(
𝑇 −1
𝑖,𝜏 (𝑌)

)��� . (18)

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2025.

0:4 • Trevor Hedstrom, Markus Kettunen, Daqi Lin, Chris Wyman, and Tzu-Mao Li

Now, we write the bias as the expectation of the difference of Equa-
tion 16 and Equation 17:

|Bias| = |E [⟨𝐼 ⟩ − ⟨𝐼biased⟩] |

=

���E [
𝜔𝜏 (𝑌) 𝑓 (𝑌)𝑊𝑌

− 𝜔𝜏

(
𝑇 −1
𝑧,𝜏 (𝑌)

)
𝑓 (𝑌)𝑊

𝑌

] ���
≤ E

[���𝜔𝜏 (𝑌) − 𝜔𝜏

(
𝑇 −1
𝑧,𝜏 (𝑌)

)��� 𝑓 (𝑌)𝑊𝑌

]
= E

[
𝑓 Δ𝑧 (𝑌)𝑊𝑌

]
.

(19)

We write this as an expectation over the possible choices 𝑇𝑖 (𝑋𝑖) for
𝑌 , noting that the selection probability 𝑃𝑠 (𝑖) = 0 if 𝑋𝑖 cannot be
shifted with 𝑇𝑖 . With

𝑊
𝑌
=

1
𝑝 (𝑌)

𝑀∑︁
𝑖=1

𝑤𝑖 , (20)

we reach |Bias|

≤
𝑀∑︁
𝑖=1
E

𝑓 Δ𝑖 (𝑇𝑖 (𝑋𝑖)) ©­«
1

𝑝 (𝑇𝑖 (𝑋𝑖))

𝑀∑︁
𝑗=1

𝑤 𝑗
ª®¬ [𝑃𝑠 (𝑖) > 0]𝑃𝑠 (𝑖)

 (21)

=

𝑀∑︁
𝑖=1
E

𝑓 Δ𝑖 (𝑇𝑖 (𝑋𝑖)) ©­«
1

𝑝 (𝑇𝑖 (𝑋𝑖))�
�
��𝑀∑︁

𝑗=1
𝑤 𝑗

ª®¬ [𝑃𝑠 (𝑖) > 0] 𝑤𝑖

��
��∑𝑀

𝑗=1𝑤 𝑗


=

𝑀∑︁
𝑖=1
E

[
[𝑝 (𝑇𝑖 (𝑋𝑖)) > 0] 𝑓 Δ𝑖 (𝑇𝑖 (𝑋𝑖))

𝑤𝑖

𝑝 (𝑇𝑖 (𝑋𝑖))

]
=

𝑀∑︁
𝑖=1
E

[𝑝 (𝑇𝑖 (𝑋𝑖)) > 0] 𝑓 Δ𝑖 (𝑇𝑖 (𝑋𝑖))
𝑚𝑖 (𝑇𝑖 (𝑋𝑖))����𝑝 (𝑇𝑖 (𝑋𝑖))𝑊�̂�𝑖

��� 𝜕𝑇𝑖
𝜕�̂�𝑖

���
����𝑝 (𝑇𝑖 (𝑋𝑖))

 .
On line 3, the bracket [𝑝 (𝑇𝑖 (𝑋𝑖)) > 0] first requires that 𝑇𝑖 (𝑋𝑖) is
defined, i.e., 𝑋𝑖 ∈ Dom(𝑇𝑖); we leave this implicit for brevity. All
summands are now of form E

[
𝑔(𝑋𝑖)𝑊�̂�𝑖

]
, and by the definition of

unbiased contribution weights, we write

=

𝑀∑︁
𝑖=1

∫
supp �̂�𝑖

[𝑝 (𝑇𝑖 (𝑥))>0] 𝑓 Δ𝑖 (𝑇𝑖 (𝑥))𝑚𝑖 (𝑇𝑖 (𝑥))
���� 𝜕𝑇𝑖𝜕𝑥

���� d𝑥
=

𝑀∑︁
𝑖=1

∫
supp �̂�𝑖∩Dom(𝑇𝑖)

[𝑝 (𝑇𝑖 (𝑥)) > 0] 𝑓 Δ𝑖 (𝑇𝑖 (𝑥))𝑚𝑖 (𝑇𝑖 (𝑥))
���� 𝜕𝑇𝑖𝜕𝑥

���� d𝑥 .
(22)

The change of variables 𝑦 = 𝑇𝑖 (𝑥𝑖) now yields

=

𝑀∑︁
𝑖=1

∫
𝑇𝑖 (supp �̂�𝑖∩Dom(𝑇𝑖))

[𝑝 (𝑦) > 0] 𝑓 Δ𝑖 (𝑦)𝑚𝑖 (𝑦) d𝑦, (23)

which by exchanging the domain and the bracket is equivalent with

=

𝑀∑︁
𝑖=1

∫
supp𝑝

[𝑦 ∈ 𝑇𝑖 (supp𝑋𝑖 ∩ Dom(𝑇𝑖))] 𝑓 Δ𝑖 (𝑦)𝑚𝑖 (𝑦) d𝑦. (24)

We now drop the bracket, since the resampling MIS weights 𝑚𝑖

require𝑚𝑖 (𝑦) = 0 if there exist no 𝑥 ∈ supp𝑋𝑖 such that 𝑦 = 𝑇𝑖 (𝑥).
We reach

=

𝑀∑︁
𝑖=1

∫
supp𝑝

𝑓 Δ𝑖 (𝑦)𝑚𝑖 (𝑦) d𝑦. (25)

Let us now assume the relative techniqueMIS weight error is smaller
than some arbitrary 𝜖𝜔 :���𝜔𝜏 (𝑦) − 𝜔𝜏

(
𝑇 −1
𝑖,𝜏
(𝑦)

)���
𝜔𝜏 (𝑦)

≤ 𝜖𝜔 , (26)

where 𝑦 = (𝑦, 𝜏). Continuing from Equation 25, we reach the in-
equality

|Bias| ≤
𝑀∑︁
𝑖=1

∫
supp𝑝

𝑓 Δ𝑖 (𝑦)𝑚𝑖 (𝑦) d𝑦

=

𝑀∑︁
𝑖=1

∫
supp𝑝

(
𝑓 (𝑦)

���𝜔𝜏 (𝑦) − 𝜔𝜏

(
𝑇 −1
𝑖,𝜏 (𝑦)

)���)𝑚𝑖 (𝑦) d𝑦

≤
𝑀∑︁
𝑖=1

∫
supp𝑝

𝜖𝜔 𝜔𝜏 (𝑦) 𝑓 (𝑦)𝑚𝑖 (𝑦) d𝑦

= 𝜖𝜔

∫
supp𝑝

𝜔𝜏 (𝑦) 𝑓 (𝑦)
(
𝑀∑︁
𝑖=1

𝑚𝑖 (𝑦)
)

d𝑦.

Since the original estimator is unbiased, the MIS weights sum to 1,
and we reach

= 𝜖𝜔

∫
supp𝑝

𝜔𝜏 (𝑦) 𝑓 (𝑦) d𝑦

= 𝜖𝜔 E [⟨𝐼 ⟩]
= 𝜖𝜔 𝐼 ,

i.e.,

|Bias| ≤ 𝜖𝜔 𝐼 ,

the relative bias from reusing technique MIS weights is bounded by
their relative error.

3 DATA STRUCTURES
The Light Vertex Cache is a simple array of LightSubpathVertex
structs:
s t ruc t L i gh t Subpa thVe r t e x {

SceneVertex 𝑦0
PathVertex 𝑦𝑠−1
f l oa t3 th roughput
f l o a t subpa thPd f
uint subpa thSeed
uint subpa th I d
uint16_t numVer t i ces
uint16_t numBounces
f l o a t 𝑑VC

f l o a t 𝑑p

}

In our implementation, the PathVertex struct is 48 bytes as it
contains information needed to fetch all shading and geometry data,
while the SceneVertex struct is only 16 bytes as it only contains infor-
mation needed to fetch geometry data. The full LightSubpathVertex
struct is 112 bytes (including padding for alignment).
Our per-pixel path reservior struct is shown below. Here, the

MisEvalData struct is 84 bytes, containing all information required

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2025.

Supplemental Document for ReSTIR BDPT • 0:5

s t ruc t Pa t hR e s e r v o i r {
f l oa t UCW
f l oa t con f i denceWeigh t / / 𝑐𝑖

uint cameraSubpathSeed
uint cameraSubpath Id
uint8_t bounces
uint8_t p r e f i xBounc e s / / Bounces b e f o r e 𝑥𝑟

uint8_t p r e f i xD i f f u s e B oun c e s
uint8_t f l a g s / / C au s t i c or non− c a u s t i c
f l oa t3 pathF / / 𝑓 (𝑥)
f l oa t misWeight / / 𝜔𝜏

f l oa t p r e f i x P d f / / 𝑝 (𝑥0 → . . .→ 𝑥𝑟)
PathVertex 𝑥𝑟 / / Reconnec t i on v e r t e x
f l oa t3 s u f f i x F / / 𝑓 (𝑥𝑟 → . . .→ 𝑥𝑠+𝑡−1)
f l oa t s u f f i x P d f / / 𝑝 (𝑥𝑟 → . . .→ 𝑥𝑠+𝑡−1)
f l oa t r e connec t i onCos / /

���𝑛𝑟 · 𝑥𝑟−1−𝑥𝑟
∥𝑥𝑟−1−𝑥𝑟 ∥

���
f l oa t r e c o nn e c t i o nD i s t / / ∥𝑥𝑟−1 − 𝑥𝑟 ∥
f l oa t3 d i rOu t / / 𝑥𝑟+1−𝑥𝑟

∥𝑥𝑟+1−𝑥𝑟 ∥
SceneVertex 𝑦0
uint l i g h t P a t h S e e d
uint l i g h t P a t h I d
f l oa t l i g h t P a t h P d f / / 𝑝 (𝑦0 → . . .→ 𝑦𝑠−1)
uint16_t l i g h t P a t h V e r t i c e s
uint16_t l i g h t P a t hD i f f u s e B oun c e s
MisEvalData cachedMisData

}

to compute �̄�𝑠−1 and �̄�𝑡−1, which are used to compute the full MIS
weight 𝜔𝜏 (Equation 33 in the main text).

REFERENCES
Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light

Transport Simulation with Vertex Connection and Merging. ACM Transactions on
Graphics (TOG) 31, 6, Article 192 (Nov. 2012), 10 pages. https://doi.org/10.1145/
2366145.2366211

D. van Antwerpen. 2011. Recursive MIS Computation for Streaming BDPT on the GPU.
(2011).

Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph. D.
Dissertation.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2025.

https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/2366145.2366211

	1 Recursive MIS Weights for Reconnection
	1.1 Notation
	1.2 Recursive MIS weights
	1.3 Non-recursive dVCt-1
	1.4 Additional quantities
	1.5 Computing dVCt-1

	2 Bounds on Error from Technique MIS Reuse
	3 Data structures
	References

