
Supplemental Document: Conditional Resampled Importance
Sampling and ReSTIR

Markus Kettunen∗
NVIDIA
Finland

mkettunen@nvidia.com

Daqi Lin∗
NVIDIA
USA

daqil@nvidia.com

Ravi Ramamoorthi
NVIDIA and UC San Diego

USA
ravir@cs.ucsd.edu

Thomas Bashford-Rogers
University of Warwick

UK
thomas.bashford-

rogers@warwick.ac.uk

Chris Wyman
NVIDIA
USA

chris.wyman@acm.org

ACM Reference Format:
Markus Kettunen, Daqi Lin, Ravi Ramamoorthi, Thomas Bashford-Rogers,
and Chris Wyman. 2023. Supplemental Document: Conditional Resampled
Importance Sampling and ReSTIR. In SIGGRAPH Asia 2023 Conference Papers
(SA Conference Papers ’23), December 12–15, 2023, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3610548.3618245

This document provides additional information about our condi-
tional ReSTIR suffix reuse and final gather prototype (Section S.1),
as well as additional experiments (Section S.2), notes on perfor-
mance (Section S.3), convergence (Section S.4), and an extended
pseudocode with technical considerations (Section S.5). We also
discuss quality limitations of our current final gather prototype
(Section S.6).

Please note: Experiments and details are provided for validation
and as a potential starting point for future experiments; we do not
expect our prototype, in its current form, to become widely used in
real applications.

S.1 THEORY AND IMPLEMENTATION
DETAILS

In this section, we provide more details about our prototype and
some parts of the theory.

S.1.1 When is a Candidate Valid for Conditional
ReSTIR

Reusing conditioned samples imposes some restrictions on the al-
lowed dependencies between the conditioning and the conditioned
random variables—a wrong dependency may make using a sample
as a candidate impossible.
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Tricky scenarios arise if the conditional context depends on
the candidate samples, making a candidate’s unbiased contribu-
tion weight invalid in the correlated conditional context. But not
all dependencies are forbidden, only certain kind of conditional
dependencies.

For example, picking new prefixes with target function depen-
dent on prior suffixes biases future computations, i.e., any future
resampled suffixes conditioned on these prefixes. Intuitively, view
such circular dependencies as bad. But one might ask: how can driv-
ing supporting prefixes with the suffixes invalidate future suffixes?
After all, supporting prefixes are never directly used for integration.
We pick independent prefixes for shading, and merely choose the
suffix reservoir by a 𝑘-NN search among the supporting prefixes.

Let 𝑋𝑝 , 𝑋𝑠 be the previous frame’s prefix and suffix with con-
tribution weights𝑊𝑋𝑝 and𝑊𝑋𝑠 |𝑋𝑝 . To use this candidate to select
next frame’s suffix 𝑌 𝑠 with conditional ReSTIR, given next frame’s
prefix 𝑌𝑝 , we need a contribution weight𝑊𝑋𝑠 |𝑋𝑝 ,𝑌𝑝 . However, if
𝑌𝑝 is updated dependently to 𝑋𝑠 , it is no longer conditionally inde-
pendent of 𝑋𝑠 and𝑊𝑋𝑠 |𝑋𝑝 (given 𝑋𝑝 ), and hence𝑊𝑋𝑠 |𝑋𝑝 can no
longer be used as a drop-in replacement for𝑊𝑋𝑠 |𝑋𝑝 ,𝑌𝑝 , required
for conditional ReSTIR. The conditional dependency between the
new prefix 𝑌𝑝 and the old suffix 𝑋𝑠 makes the new context and the
old sample incompatible.

The following theorem formally explains the conditional inde-
pendence requirement:

Theorem S.1. Let 𝑋 be a random variable with UCW𝑊𝑋 , and let
𝑋 and𝑊𝑋 be independent of 𝑍 . Then𝑊𝑋 |𝑍 :=𝑊𝑋 is a conditional
UCW for 𝑋 , given 𝑍 .

Proof. Let 𝑓 be any integrable function of 𝑥 and 𝑧. By indepen-
dence of both 𝑋 and𝑊𝑋 from 𝑍 ,

E
[
𝑓 (𝑋,𝑍 )𝑊𝑋 |𝑍 |𝑍

]
= E

𝑋,𝑊𝑋

[𝑓 (𝑋,𝑍 )𝑊𝑋 ] (S.1)

=

∫
supp(𝑋 )

𝑓 (𝑥, 𝑍 ) d𝑥 (S.2)

=

∫
supp(𝑋 |𝑍 )

𝑓 (𝑥, 𝑍 ) d𝑥, (S.3)

proving by definition (Equation 5) that𝑊𝑋 is a conditional UCW
for 𝑋 , given 𝑍 . □
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Theorem S.2. Let 𝑋 be a random variable with conditional UCW
𝑊𝑋 |𝑌 , and let 𝑋 and𝑊𝑋 |𝑌 be independent of 𝑍 , given 𝑌 . Then
𝑊𝑋 |𝑌,𝑍 :=𝑊𝑋 |𝑌 is a conditional UCW for 𝑋 , given 𝑌 and 𝑍 .

Proof. Apply the previous theorem to 𝑋 and𝑊𝑋 |𝑌 in the prob-
ability space conditioned by 𝑌 . □

Less formally, we can add a random variable 𝑍 to condition𝑊𝑋 ,
if 𝑍 is independent of 𝑋 and𝑊𝑋 , given the previous conditioning
variables.

By substituting the previous frame’s suffix 𝑋𝑠 for 𝑋 , all previ-
ous supporting prefixes as vector 𝑋𝑝 for 𝑌 , and the new frame’s
supporting prefixes as vector 𝑌𝑝 for 𝑍 , we read:

Let the previous suffix 𝑋𝑠 have conditional UCW𝑊𝑋𝑠 |𝑋𝑝 , and
let the new supporting prefixes 𝑌𝑝 be independent of both 𝑋𝑠 and
its UCW𝑊𝑋𝑠 |𝑋𝑝 , given old prefixes 𝑋𝑝 . Then,𝑊𝑋𝑠 |𝑋𝑝 can be used
as𝑊𝑋𝑠 |𝑋𝑝 ,𝑌𝑝 when passing 𝑋𝑠 into conditional ReSTIR in the next
frame.

The suffixes and prefixes must be kept independent, except for
the shared context of the old supporting prefixes.

S.1.2 Forbidden Conditional Independence in
Joint UCWs

With certain constraints, the product of two UCWs𝑊𝑋1 and𝑊𝑋2
can form a joint UCW 𝑊𝑋1,𝑋2 . The simplest case is when 𝑊𝑋1
and𝑊𝑋2 are independent, but this is often a very demanding re-
quirement. Often, we want to join a marginal UCW𝑊𝑋1 with a
conditional UCW𝑊𝑋2 |𝑋1 , which calls for a weaker constraint than
total independence.

As described in Theorem 4.1, the required constraint is condi-
tional independence:𝑋2 and𝑊𝑋2 |𝑋1 must be conditionally indepen-
dent of𝑊𝑋1 , given 𝑋1. They all can depend on the shared context
𝑋1, but other than that,𝑋2 and𝑊𝑋2 |𝑋1 must be independent of𝑊𝑋1 .

Imagine a simplified two-pass ReSTIR where we update a pre-
fix 𝑋𝑝 with a target function depending on a suffix 𝑋𝑠 , applying
ReSTIR, and vice versa for the suffix, with conditional ReSTIR.
Assume we somehow acquire valid UCWs𝑊𝑋𝑝 and𝑊𝑋𝑠 |𝑋𝑝 (the
conditional dependency makes this hard, see Section S.1.1.) Still,
this back-and-forth ReSTIR would lead to bias when evaluating
⟨𝐼 ⟩ = 𝑓 (𝑋𝑝 , 𝑋𝑠 )𝑊𝑋𝑝𝑊𝑋𝑠 |𝑋𝑝 , since𝑊𝑋𝑝𝑊𝑋𝑠 |𝑋𝑝 does not form a
joint UCW𝑊𝑋𝑝 ,𝑋𝑠 due to the conditional dependency between
𝑊𝑋𝑝 and 𝑋𝑠 (and𝑊𝑋𝑠 |𝑋𝑝 ), given 𝑋𝑝 .

S.1.3 Interpretation of Domain Weights
The generalized balance heuristic (Equation 15),

𝑚𝑖 (𝑦) =
𝛼𝑖 𝑝←𝑖 (𝑦)∑𝑀
𝑗=1 𝛼 𝑗 𝑝←𝑗 (𝑦)

, (S.4)

uses Jacobian-corrected target functions 𝑝← as proxies for un-
known (conditional) PDFs. Assuming the proxy PDFs were exactly
proportional to the unknown PDFs, i.e., if we had

𝑝←𝑗

∥𝑝←𝑗 ∥1
= 𝑝 𝑗 , (S.5)

then we could rewrite the generalized balance heuristic as

𝑚𝑖 (𝑦) =
(𝛼𝑖 | |𝑝←𝑖 | |1) 𝑝𝑖 (𝑦)∑𝑀
𝑗=1

(
𝛼 𝑗 ∥𝑝←𝑗 ∥

)
𝑝 𝑗 (𝑦)

. (S.6)

Comparing this to Veach and Guibas’ [1995] multi-sample MIS,

𝑚𝑖 (𝑦) =
𝑛𝑖 𝑝𝑖 (𝑦)∑𝑀
𝑗=1 𝑛 𝑗 𝑝 𝑗 (𝑦)

, (S.7)

which combines 𝑛1 + · · · + 𝑛𝑀 samples each for strategies 1, . . . , 𝑀 ,
we present a heuristic argument. If each sample 𝑌𝑖 were equivalent
to 𝑛𝑖 independent samples (i.e., 𝑛𝑖 is the effective sample count),
then we should pick the 𝛼𝑖 such that 𝛼𝑖 ∥𝑝←𝑖 ∥1 = 𝑛𝑖 , making the
generalized balance heuristic effectively into multi-sample MIS.

The norms ∥𝑝←𝑖 ∥1 are generally not known. This is non-issue
when all 𝑝←𝑗 have approximately the same 1-norm, as the norms
cancel out, and we can match multi-sample MIS by selecting 𝛼𝑖 =
𝑛𝑖 , the effective sample count, or confidence weight, of the input
sample.

If the norms ∥𝑝←𝑖 ∥1 vary, we could, in principle, avoid a variance
increase by choosing 𝛼𝑖 = 𝑛𝑖/∥𝑝←𝑖 ∥1, but the ∥𝑝←𝑖 ∥1 are normally
not known. Hence, if we can bring the norms closer by other means,
we should. In our case, we drop the unnecessary factor 𝑓𝑝 (𝑥𝑝 ) from
the suffix’s target function in suffix ReSTIR; this does not change
the suffix’s distribution, but it decreases implicit domain weighting.

Bitterli et al. [2020] presented a similar argument in their sup-
plemental document; we expand on it by making the connection to
multi-sample MIS and taking into account effective sample counts.

S.1.4 Domain Weights in Our Prototype
Adhering to the previous section, we set the domain weights 𝛼𝑖
for prefix resampling (Algorithm 1, line 5), suffix resampling (Al-
gorithm 1, line 7), and integration (Algorithm 1, lines 12 and 16)
proportional to the reservoirs’ effective sample counts, i.e., the
confidence weight𝑀𝑟 (Section 6.2 in [Lin et al. 2022]).

A new sample always gets𝑀𝑟 = 1, while the suffix reservoirs’𝑀𝑟

increases through spatiotemporal reuse up to a cap of𝑀max
𝑟 = 50.

Capping𝑀𝑟 is necessary [Lin et al. 2022], and it avoids excessive
temporal correlation and potential sample impoverishment. Our
value of𝑀max

𝑟 = 50 is greater than𝑀max
𝑟 = 20 used in prior work,

as our final gather effectively removes visible correlations; a higher
𝑀max
𝑟 allows us to benefit more from temporal accumulation. We

observe diminishing returns from𝑀max
𝑟 larger than 50.

For the spatial reuse pass for ReSTIR suffixes (Algorithm 1, line
8), we use 3 neighbors within a 30-pixel screen space radius andMIS
with the defensive variant of the generalized pairwise MIS [Bitterli
2021; Lin et al. 2022]. Pairwise MIS favors the center pixel’s own
sample, as it is already in the right domain and thus tends to be
more suitably distributed than spatial neighbors.

S.1.5 Spatial Neighbor Search
At integration time, having sampled an integration prefix, we search
for the closest supporting prefixes to borrow their ReSTIR suffixes.
While more advanced heuristics would likely lead to better results,
our proof-of-concept simply compares the world-space locations
of the prefixes’ last vertices.
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To find the closest supporting prefixes, we build a BVH over
the supporting prefixes’ last vertices to perform approximate fixed-
maximum-radius k-NN queries. The size of the BVH is proportional
to the number of screen pixels. We use the algorithm of Evangelou
et al. [2021], utilizing hardware ray tracing. We use the DXR API
for automatic tree construction and perform hardware accelerated
ray queries in shaders. However, this search was not designed nor
meant to be optimal. Currently, BVH build and search contributes
roughly 30% of our prototype’s total cost.

The densities of the supporting prefixes’ last vertices tend to
vary by region in the world space, partially because they originate
from screen space (in a stratified pattern) and spread out. Thus, we
use an adaptive search radius for the k-NN queries. In the BVH,
each vertex is assigned a bounding box with half-width 𝑟 given
by a certain heuristic formula that scales by the path’s Euclidean
length:

𝑟 = 2.0 × ∥𝑥 ∥ × 𝛼fov . (S.8)

Here, ∥𝑥 ∥ is the sum of the lengths of the path segments and 𝛼fov
is the angular coverage of the screen’s central pixel in radians. This
heuristic formula is simplistic but good enough for preliminary
results with our proof-of-concept implementation; it reasonably
well adapts to different scene sizes and viewing positions. We use
the same formula for determining the search radius for the k-NN
search at an integration prefix’s last vertex. If a given number
of neighbors cannot be found by k-NN search, we pick random
reservoirs in the 30-pixel screen space neighborhood to reuse their
suffixes as a fallback.

While path footprints [Bekaert et al. 2003] can more accurately
adapt to material types and viewing angles, their cosine terms
and scatter probability densities can create highly non-uniform
bounding box sizes, making it hard to choose a constant factor
that achieves both good performance and quality. However, our
ad-hoc formula is merely a first step towards an efficient method
for finding good supporting prefixes, which we have shown to be
an important problem.

S.1.6 Splitting Paths into Prefixes and Suffixes
Our suffix ReSTIR and final gather integrates over the path space
by dividing paths into prefixes and suffixes. To avoid complications,
we deterministically divide so that, for a given a path, we always
split it the same way; the split of a path 𝑥 into (𝑥𝑝 , 𝑥𝑠 ) is unique.
This avoids, for instance, double-counting parts of path space. So
what is a good way to define a prefix?

Traditional photon mapping sends final gather rays from the first
sufficiently rough vertex [Pharr et al. 2016]; these gather rays then
hit either rough or glossy surfaces, where the photon mapper then
performs radiance estimation. In our terminology, its prefixes end
at the vertex after the first rough vertex. If the last vertex is glossy,
the final gather ray hits a glossy surface, and has low probability of
getting a useful contribution. In our prototype, the same problem
exists if we allow prefixes to terminate at a glossy vertex. Thus, we
require prefixes to end at a rough vertex.

In order for our final gather to generate decorrelated samples,
we need at least one sufficiently rough vertex before reconnecting
to ReSTIR-selected suffixes; we need at least two rough vertices.
(Paths with only highly glossy and specular interfaces are already

highly correlated, spatially and temporally, so only-specular pre-
fixes cannot hide correlations in the suffixes they connect to.)

Our prefix ReSTIR applies shift maps when reusing prefixes
between frames. To avoid invalidating suffixes, it is important that
the last vertices of the prefixes do not move in the shift mappings;
they will only be moved by ReSTIR accepting a new prefix. With the
manifold exploration shift mapping [Jakob and Marschner 2012] we
could achieve this by defining a prefix to end at the second rough
vertex. However, local shift mappings [Kettunen et al. 2015] such
as the hybrid shift [Lin et al. 2022] require two consecutive rough
vertices to execute a reconnection.

We additionally require that the last segment of the prefix is
not too short. This discourages supporting prefixes from clustering
near object edges and corners, which would lead to a small set of
suffix reservoirs being overused, boosting correlation.

This gives us an improved division of a path into a prefix and a
suffix: the prefix is the shortest subpath from the camera that con-
tains two consecutive sufficiently rough vertices that are sufficiently
far from each other. The remainder of the path is the suffix.

Figure S.1 compares the quality of our final gather with photon
mapping style prefix definition, and our new prefix definition. Our
new definition significantly improves image quality at reflections
and near object edges.

We define rough vertices as material roughness being at least 0.2
(for the current BSDF lobe, see Section S.1.8). We set the distance
threshold to 1% of the scene size; a more robust method is future
work. Our average bounce count for integration prefixes is still
close to one in most scenes. Figure S.2 shows bounce count maps
in two scenes.

S.1.7 Shift Mappings
Our roughness and distance conditions are defined similarly to Lin
et al. [2022] and we use their hybrid shift implementation (random
replay + reconnection) for temporal prefix reuse. Our suffix reuse
also uses the hybrid shift, but conditioned with the prefixes, as
mentioned in Section 6.

S.1.8 Multi-layer Materials
Vertices on single-lobe materials are often relatively easy to classify
as either rough or smooth, but classification onmulti-layermaterials
is harder: it depends on the sampled BSDF lobe [Lin et al. 2022].
Applying this to a prefix’s last vertex comes with a challenge: its
material classification then depends on the current ReSTIR-driven
suffix. If the first suffix vertex sampled a smooth BSDF lobe, the
prefix’s last vertex must also turn smooth, making the prefix fail our
definition (from Section S.1.6). While this conflict is likely solvable,
we leave it for future work.

For simplicity, we only require the last vertex of the prefix to
contain a rough BSDF component, rather than force sampling it. As
a result of this simplification, some subpaths are defined as prefixes
at glossy surfaces, causing inefficient suffix reuse. This quality loss
is partially compensated by use of a hybrid shift during suffix reuse,
which often allows reuse through glossy vertices, but avoiding the
issue entirely would be better.
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Living Room (Reference)

Ours, PM strategy Ours, new strategy Reference

Ours, PM strategy Ours, new strategy Reference

Figure S.1: Comparing final gather with a photon mapping-inspired
prefix definition (“PM”) against our improved definition in a 32-
integration-prefix gather in the Living Room scene (indirect illumina-
tion only). Photon mapping shoots final gather rays at the first diffuse
surface of a path. Using the corresponding idea to determine the prefix
leads to suffix connections on specular surfaces (like the glasses in
the top row’s insets), which results in poor reuse. Our improved prefix
definition extends prefix paths through specular objects, which shows
clear improvement in the caustics on the table. We additionally require
prefixes to extend through corners and edges, which removes VPL-like
artifacts due to correlation in neighbor search (red arrows). Our new
strategy only increases ray count by 0.5%.

Living Room (avg. bounces 1.09) Veach Ajar (avg. bounces 1.27)

Figure S.2:Average integration prefix length remains close to one with
our improved prefix definition. As shown in these bounce heatmaps,
most pixels still have one-bounce prefixes (vertex count = 2 + bounce
count). Pixels around corners and edges, or those containing a specular
or transmissive material, have longer prefix lengths. Black pixels do
not hit any surface.

S.2 ADDITIONAL ABLATION STUDIES
Figures S.3 and S.4 study the effect on integration variance of the
integration prefix count and number of reused ReSTIR suffixes per
prefix. In both figures, we show results with just one canonical
suffix per pixel (left), implementing our final gather roulette, but
we also show results without roulette (right), which samples one
canonical suffix for each prefix. Each data point is collected from
an independent run and the reservoirs are warmed up before error
computation (usually warming up for 𝑀max

𝑟 frames will fill the
temporal history, see Section S.1.4, though somewhat less is often
sufficient).

As shown in the plots, increasing the integration prefix count
more effectively decreases variance than increasing the reused
suffixes count; prefixes help more and more can be used before en-
countering diminishing returns. On the other hand, reusing more
than a few ReSTIR-suffixes per prefix encounters diminishing re-
turns. This is likely because ReSTIR suffixes of close-by supporting
prefixes tend to share information due to spatial reuse.

When using Russian roulette with one canonical suffix for all
prefixes (left plots), the task of the integration prefixes is to gather
the information stored in the suffixes. This information is high-
quality but not unlimited, and eventually increasing integration
prefixes should yield diminishing returns. We see this in Zero Day
(Figure S.4); a part of the path space is not covered by the ReSTIR
suffixes, and while borrowing more suffixes can reduce this region,
eventually more canonical suffixes are needed to further decrease
variance. In Veach Ajar (Figure S.3), only a small part of the path
space is not covered by the ReSTIR suffixes, which very accurately
capture the illumination, so improving the final gather with more
prefixes, without adding more canonical suffixes, is very effective.

S.3 PERFORMANCE
The current performance is bottlenecked by tracing integration pre-
fixes and searching spatial neighbors. See Table S.1 for an analysis
of frame time for Figure 6. As prefix count increases, the final gather
cost becomes dominant, whereas the cost of updating the suffix
pool is almost constant. This indicates that future optimization
effort should focus on reducing the final gather cost or the number
of integration prefixes required (by improving their sample distri-
bution). We also provide timings for Figure 3 and 4 (see Table S.2
and S.3). Table S.2 demonstrates the quadratic time complexity of
balance heuristic in suffix reuse. Optimization may want to explore
biased variants of suffix reuse to reduce the cost of MIS weight
computation. In Table S.3, our method with 128 integration prefixes
with Russian roulette suffix generation (“128”) is about 2× faster
to render than the version with a canonical suffix for each prefix
(“128 + C”) with current implementation, which is a smaller factor
compared to the 4-5 × fewer rays shot. With optimization in spatial
neighbor search, this gap should become smaller.

Table S.4 gives timings for Figure 1 and 7.

S.4 CONVERGENCE
Figure S.5 and S.6 study the convergence of our algorithm in dif-
ferent scenes using SMAPE (symmetric mean absolute percentage
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error)1 and relMSE (relative mean squared error)2, by accumulating
256 independent renders of Figure 7. While our method provides
lower visual error and lower SMAPE numbers than ReSTIR PT
with small number of frames accumulated, it can have higher error
numbers than ReSTIR PT with large number of accumulated frames.
This is largely caused by fireflies in our Russian roulette algorithm,
which the L1 SMAPE numbers tend to filter (which matches the
perceived error closer). This suggests that adding more canonical
suffixes can help reduce the error in offline rendering in the long
run, and our result with per-prefix canonical suffixes indeed shows
consistently lower relMSE and SMAPE than ReSTIR PT in all scenes.

S.5 PSEUDOCODE
The main document Algorithm 1 includes a high-level pseudocode
for our prototype final gather algorithm. In this supplemental doc-
ument, we provide lower-level pseudocode for selected key compo-
nents, including GRIS (Algorithm S.3), CRIS (Algorithm S.4), and
Gather (Algorithm S.5). We also provide a modified pseudocode for
our prototype final gather (Algorithm S.1), listing function parame-
ters more explicitly, and the reservoir structure (Algorithm S.2).

S.6 QUALITY LIMITATIONS
In addition to the cost, our final gather prototype also has some
quality limitations. Even with many integration prefixes, our algo-
rithm could have difficulty sampling caustics with sharp directional
distributions (due to using BSDF-sampled prefixes). In compari-
son, ReSTIR PT resamples full paths, allowing easier reproduction
of caustics (see the Tower Bridge scene in the interactive image
viewer). In addition, slightly increasing the number of borrowed
suffixes can sometimes bring considerable noise reduction, espe-
cially in scenes with very glossy materials or complex shadows
(where the suffix space of the integration prefix is inadequately
covered by the suffix space of one nearby prefix). Improving impor-
tance sampling of integration prefixes (e.g. by path guiding) and
improving neighbor search and reuse efficiency could solve these
problems, as mentioned in Section 9.

1We use SMAPE(𝐼 , 𝐼gt ) = mean

( ���𝐼−𝐼gt
���

0.01·mean
(
𝐼gt

)
+(𝐼gt+𝐼 )/2

)
, where 𝐼 and 𝐼gt are

grayscale input image and ground-truth, respectively.

2We use relMSE(𝐼 , 𝐼gt ) = mean

(
(𝐼−𝐼gt )2

0.01·mean
(
𝐼gt

)2
+𝐼2

gt

)
, where 𝐼 and 𝐼gt are grayscale

input image and ground-truth, respectively.
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Algorithm S.1: Detailed pseudocode for our prototype final gather. We explicitly show UCW parameters of GRIS and CRIS, but
PathContrib and Gather also require these parameters.
1 function SuffixReSTIR()

2 parallel foreach pixel 𝑞 ∈ Image :
// Temporal supporting prefix update with GRIS. Rvs: Reservoirs

3 𝑞′ ← TemporalReprojection(𝑞)
4 𝑋𝑝 ,𝑊𝑋𝑝 ← TraceNewPrefix(𝑞) // Canonical sample.

5 Rvs[𝑞 ] .(𝑋𝑝 ,𝑊𝑋𝑝 ) ← GRIS( (𝑋𝑝 ,𝑊𝑋𝑝 ), prevRvs[𝑞′ ] .(𝑋𝑝 ,𝑊𝑋𝑝 ) ) // See Algorithm S.3
// Temporal suffix update with conditional RIS (CRIS).

6 𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ← TraceNewSuffix(Rvs[𝑞 ] .𝑋𝑝 ) // Canonical suffix.

7 Rvs[𝑞 ] .(𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ) ← CRIS( (𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ), prevRvs[𝑞′ ] .(𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ) , [Rvs[𝑞 ] .𝑋𝑝 , prevRvs[𝑞 ] .𝑋𝑝 ] ) // See Algorithm S.4
// Spatial suffix update with CRIS, from random neighbors.

8 𝑞2, ..., 𝑞𝑀 ← FindScreenSpaceNeighbors(𝑞)
9 Rvs[𝑞 ] .(𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ) ← CRIS(Rvs[𝑞 ] .(𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ), ..., Rvs[𝑞𝑀 ] .(𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ) , [Rvs[𝑞 ] .𝑋𝑝 , ..., Rvs[𝑞𝑀 ] .𝑋𝑝 ] ) // See Algorithm S.4

10 prevRvs← Rvs // Save for next frame.
// Evaluation (final gather), implements Equation 23.

11 for 𝑖 ← 1 to 𝑁 do
12 𝑋𝑝 ,𝑊𝑋𝑝 ← TraceNewPrefix(𝑞) // Integration prefix.

13 [𝑅1, ..., 𝑅𝑘 ] ← FindSpatialKNN(Rvs, 𝑋𝑝 ) // Find 𝑘 = 𝑀 − 1 reservoirs with nearest supporting prefixes.
// Contributions from reused suffixes.

14 Color[𝑞 ] += Gather( [𝑅1, .., 𝑅𝑘 ], 𝑋𝑝 )/𝑁 // See Algorithm S.5

15 if 𝑖 = 1 then
// Canonical suffix contribution.

16 𝑋𝑠 ,𝑊𝑋𝑠 |𝑋𝑝 ← TraceNewSuffix(𝑋𝑝 )
17 𝑊𝑋𝑝 ,𝑋𝑠 ←𝑊𝑋𝑝𝑊𝑋𝑠 |𝑋𝑝

18 Color[𝑞 ] += MIS(𝑋𝑠 , 𝑋𝑝 , [𝑋𝑝 , 𝑅1 .𝑋
𝑝 , ..., 𝑅𝑘 .𝑋

𝑝 ] ) · 𝑓 (𝑋𝑝 , 𝑋𝑠 ) ·𝑊𝑋𝑝 ,𝑋𝑠

19 end
20 end
21 end

Technical note:
We must additionally add next event estimation from prefix vertices before the last, and emission until the last, as these contributions are not covered by our suffixes.

AlgorithmS.2:The reservoir structure (confidenceweights
[Lin et al. 2022] are not included for brevity). Note that suffix
UCW has an implicit conditional context 𝑍 that includes
all supporting prefixes (due to spatiotemporal suffix reuse).
1 class Reservoir
2 𝑋𝑝 ,𝑊𝑋𝑝 ← ∅, 0 // The supporting prefix of 𝑋𝑠

3 𝑋𝑠 ,𝑊𝑋𝑠 |𝑍 ← ∅, 0 // The suffix, conditional on all supporting
prefixes

4 𝑤sum ← 0 // The sum of weights (temporary variable in RIS)
// Assume whether to update 𝑋𝑝 or 𝑋𝑠 is clear from the context.

5 function update(𝑋𝑖 , 𝑤𝑖 )
6 𝑤sum ← 𝑤sum + 𝑤𝑖

7 if rand( ) < (𝑤𝑖/𝑤sum ) then
8 𝑋 ← 𝑋𝑖

9 end

Algorithm S.3: Pseudocode of GRIS for prefix resampling.
1 function GRIS((𝑋𝑝

1 ,𝑊𝑋
𝑝

1
), (𝑋𝑝

2 ,𝑊𝑋
𝑝

2
), · · · , (𝑋𝑝

𝑀
,𝑊

𝑋
𝑝

𝑀

))
2 Reservoir 𝑟
3 for 𝑖 ← 1 to𝑀 do
4 𝑌

𝑝

𝑖
← 𝑇𝑖 (𝑋𝑝

𝑖
) // Shift into the prefix path space Ω𝑝 of pixel 1.

5 𝑝 (𝑌𝑝

𝑖
) ← 𝑓𝑝 (𝑌𝑝

𝑖
)

6 𝑤𝑖 ←𝑚𝑖 (𝑌𝑝

𝑖
) 𝑝 (𝑌𝑝

𝑖
)𝑊

𝑋
𝑝

𝑖
|𝑇𝑖 ′ (𝑋𝑝

𝑖
) |

7 𝑟 .update(𝑌𝑝

𝑖
, 𝑤𝑖 )

8 end

9 if 𝑟 .𝑋𝑝 ≠ ∅ then
10 𝑟 .𝑊𝑋𝑝 ← 1

�̂� (𝑟 .𝑋𝑝 ) 𝑟 .𝑤sum

11 end
12 return (𝑟 .𝑋𝑝 , 𝑟 .𝑊𝑋𝑝 )
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Algorithm S.4: Pseudocode of CRIS for suffix resampling.
Note that 𝑇𝑖 (𝑋𝑠

𝑖
|𝑍 ) is written as 𝑇𝑖 (𝑋𝑠

𝑖
|{𝑋𝑝

1 , 𝑋
𝑝

𝑖
}) on line 4

because only 𝑋𝑝

1 and 𝑋𝑝

𝑖
affect the shift mapping.

1 function CRIS((𝑋𝑠
1 ,𝑊𝑋𝑠

1 |𝑍
), · · · , (𝑋𝑠

𝑀
,𝑊𝑋𝑠

𝑀
|𝑍 ), [𝑋

𝑝

1 , ..., 𝑋
𝑝

𝑀
])

2 Reservoir 𝑟
3 for 𝑖 ← 1 to𝑀 do
4 𝑌𝑠

𝑖
← 𝑇𝑖 (𝑋𝑠

𝑖
| {𝑋𝑝

1 , 𝑋
𝑝

𝑖
}) // Shift into the suffix space

Ω𝑠 (𝑋𝑝

1 ) .
5 𝑝 (𝑌𝑠

𝑖
) ← 𝑓𝑝𝑠 (𝑋𝑝

1 , 𝑌
𝑠
𝑖
) 𝑓𝑠 (𝑌𝑠

𝑖
)

//𝑚𝑖 (𝑌 𝑠 |𝑍 ) = MIS(𝑌 𝑠 , current prefix, [all prefixes])
6 𝑚𝑖 ← MIS(𝑌𝑠

𝑖
, 𝑋𝑝

𝑖
, [𝑋𝑝

1 , ..., 𝑋
𝑝

𝑀
])

7 𝑤𝑖 ←𝑚𝑖 · 𝑝 (𝑌𝑠
𝑖
)𝑊𝑋𝑠

𝑖
|𝑍 |𝑇𝑖 ′ (𝑋𝑠

𝑖
| {𝑋𝑝

1 , 𝑋
𝑝

𝑖
}) |

8 𝑟 .update(𝑌𝑠
𝑖
, 𝑤𝑖 )

9 end

10 if 𝑟 .𝑋 ≠ ∅ then
11 𝑟 .𝑊𝑋𝑠 |𝑍 ← 1

�̂� (𝑟 .𝑋𝑠 ) 𝑟 .𝑤sum

12 end

13 return (𝑟 .𝑋𝑠 , 𝑟 .𝑊𝑋𝑠 |𝑍 )

Algorithm S.5: Pseudocode to gather suffix contributions.
1 function Gather([𝑅1, ..., 𝑅𝑘 ], 𝑋𝑝 ,𝑊𝑋𝑝 )

2 Color← 0

3 for 𝑖 ← 1 to 𝑘 do
4 𝑌𝑠

𝑖
← 𝑇𝑖 (𝑅𝑖 .𝑋𝑠 | {𝑋𝑝 , 𝑅𝑖 .𝑋

𝑝 })
5 𝑚𝑖 ← MIS(𝑌𝑠

𝑖
, 𝑅𝑖 .𝑋𝑝 , [𝑋𝑝 , 𝑅1 .𝑋

𝑝 , ..., 𝑅𝑘 .𝑋𝑝 ])
6 𝑊𝑌𝑠

𝑖
|𝑋𝑝 ,𝑍 ← 𝑅𝑖 .𝑊𝑋𝑠 |𝑍 · |𝑇 ′𝑖 |

7 𝑊𝑋𝑝 ,𝑌𝑠
𝑖
|𝑍 ←𝑊𝑋𝑝 ·𝑊𝑌𝑠

𝑖
|𝑋𝑝 ,𝑍

8 Color←𝑚𝑖 · 𝑓 (𝑋𝑝 , 𝑌𝑠
𝑖
) ·𝑊𝑋𝑝 ,𝑌𝑠

𝑖
|𝑍

9 end

10 return Color

Technical notes:
𝑍 is the supporting prefixes.
Line 4: Given 𝑋𝑝 , 𝑍 , 𝑖’th suffix comes from 𝑅𝑖 , chosen by 𝑘-NN(𝑋𝑝 ; 𝑍 ).
Line 6: Suffix 𝑌 𝑠

𝑖
depends on 𝑋𝑝 and 𝑍 ; condition by current 𝑋𝑝 , 𝑍 .

Line 7: 𝑋𝑝 independent of supporting prefixes 𝑍 , so𝑊𝑋𝑝 =𝑊𝑋𝑝 |𝑍 .
Line 8: The full estimator is unbiased for any 𝑍 .

Table S.1: Time breakdown for our method with 8 and 32 integration
prefixes in Figure 6. “Other” includes components that are not related
to the algorithm, like G-Buffer generation and RTXDI.

8 prefixes 32 prefixes
Time % Time %

Suffix Resampling 21.69 ms 29.3% 22.07 ms 10.7%
– Trace New Supp. Prefix 3.50 ms 4.7% 3.65 ms 1.8%
– Supporting Prefix Reuse 1.73 ms 2.3% 1.79 ms 0.9%
– Build temporary BVH 2.59 ms 3.5% 2.61 ms 1.3%
– Trace New Suffix 7.03 ms 9.5% 7.10 ms 3.4%
– Suffix Reuse 6.84 ms 9.2% 6.92 ms 3.4%

Final Gather 50.42 ms 68.1% 182.48 ms 88.4%
– Trace Integration Prefixes 21.30 ms 28.8% 72.84 ms 35.3%
– Find Spatial KNN 16.32 ms 22.0% 62.31 ms 30.2%
– Gather Suffix Contribution 12.92 ms 17.3% 47.33 ms 22.9%

Other 1.92 ms 2.6% 1.98 ms 1.0%

Total 74.03 ms 100.0% 206.53 ms 100.00%

Table S.2: Timing for Figure 3 (studying gathering from the ReSTIR-
driven suffixes (ours) to suffixes sampled by a path tracer (MMIS)).

Suffix Count 1 2 4 8
MMIS 32 ms 38 ms 54 ms 111 ms
Ours 31 ms 37 ms 58 ms 120 ms

Table S.3: Timing for Figure 4 that studies the effect of increasing
integration prefixes (“128+C” means 128 integration prefixes with a
canonical suffix for each).

Prefix Count 2 8 32 128 128+C
Veach Ajar 25 ms 46 ms 132 ms 482 ms 834 ms
Zero Day 39 ms 71 ms 196 ms 683 ms 1421 ms

Table S.4: Timings for Figure 1 and 7. All methods use one full path
per pixel for integration.

Scene Path Tracing MMIS ReSTIR PT Ours
Tower Bridge (Figure 1) 7.0 ms 650 ms 13 ms 750 ms
Veach Ajar (Figure 7) 5.4 ms 426 ms 9.7 ms 489 ms
Zero Day (Figure 7) 12 ms 703 ms 17 ms 717 ms
Classroom (Figure 7) 6.6 ms 385 ms 10 ms 383 ms
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Figure S.3: SMAPE (symmetric mean absolute percentage error) vs number of integration prefixes in Veach Ajar.
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Figure S.4: SMAPE (symmetric mean absolute percentage error) vs number of integration prefixes in Zero Day.
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Figure S.5: Convergence plot for Figure 7 (symmetric mean absolute percentage error), averaging over 1-256 independent renders. Our Russian
roulette can sometimes cause increased variance in small parts of the image, which is not reflected in the firefly-resistant SMAPE numbers in
Figure 7. Adding per-prefix canonical suffixes (“Ours + C” in the plot) solves the issue.
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Figure S.6: Convergence plot for Figure 7 (relative mean squared error), averaging over 1-256 independent renders. Our Russian roulette can
sometimes cause increased variance in small parts of the image, which is not reflected in the firefly-resistant SMAPE numbers in Figure 7. Adding
per-prefix canonical suffixes (“Ours + C” in the plot) solves the issue. Fluctuation of the curves is mainly caused by direct lighting estimation in
RTXDI.
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