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Fig. 1. Our new generalized resampled importance sampling (GRIS) theory extends resampled importance sampling [Talbot 2005] to guarantee
convergence even when applied to correlated samples arising from spatiotemporal reuse (i.e., Bitterli et al. [2020]). GRIS allows applying ReSTIR to
reuse arbitrary paths, shown with paths of length 10 in the Carousel and Paris Opera House. Main images compare naive path tracing and our
new ReSTIR PT in equal time (80 ms at 1920 × 1080). Insets show equal-time path tracing, ReSTIR GI [Ouyang et al. 2021], our ReSTIR PT, plus a
converged reference. We significantly improve quality for glossy interreflection, reflections, refractions, and other high-frequency lighting. For
Carousel, MAPE errors: path tracing (1.63), ReSTIR GI (0.45), and ReSTIR PT (0.39). Corresponding errors in Opera House: 1.28, 0.39, and 0.33.
(Carousel ©carousel_world; Paris Opera House courtesy ©GoldSmooth from TurboSquid.)

As scenes become ever more complex and real-time applications embrace
ray tracing, path sampling algorithms that maximize quality at low sample
counts become vital. Recent resampling algorithms building on Talbot et al.’s
[2005] resampled importance sampling (RIS) reuse paths spatiotemporally
to render surprisingly complex light transport with a few samples per pixel.
These reservoir-based spatiotemporal importance resamplers (ReSTIR) and
their underlying RIS theory make various assumptions, including sample
independence. But sample reuse introduces correlation, so ReSTIR-style itera-
tive reuse loses most convergence guarantees that RIS theoretically provides.

We introduce generalized resampled importance sampling (GRIS) to ex-
tend the theory, allowing RIS on correlated samples, with unknown PDFs
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and taken from varied domains. This solidifies the theoretical foundation,
allowing us to derive variance bounds and convergence conditions in ReSTIR-
based samplers. It also guides practical algorithm design and enables ad-
vanced path reuse between pixels via complex shift mappings.

We show a path-traced resampler (ReSTIR PT) running interactively on
complex scenes, capturing many-bounce diffuse and specular lighting while
shading just one path per pixel. With our new theoretical foundation, we can
also modify the algorithm to guarantee convergence for offline renderers.
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1 INTRODUCTION
Monte Carlo algorithms form the core of modern rendering. While
originally only feasible in offline renderers, ray-tracing hardware
[Kilgariff et al. 2018] has made such algorithms practical in real-
time systems as well. However, strict real-time constraints in games
limit feasible per-frame ray counts [Halen et al. 2021], giving many
modern real-time path tracers budgets of at most one path per pixel.
Importance sampling reduces variance at low sample counts by

improving sample distributions. But this becomes challenging for
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Fig. 2. Imagine a two-pixel image, with ReSTIR [Bitterli et al. 2020]
separately integrating two 1D functions (left). ReSTIR promises ex-
ponential growth in “effective” sample count at linear cost, but each
ReSTIR iteration only adds two new independent samples. Other reused
samples are duplicates, causing convergence to the wrong result (right).
Our GRIS theory explains when such cases occur and how to guarantee
proper convergence. For a less abstract, rendered example of inaccurate
convergence due to correlations, see Figure 10b.

complex global lighting, e.g., Figure 1, where sampling from optimal
distributions is impossible. Path guiding aims to learn complex
distributions online, but requires updating complex data structures
[Vorba et al. 2019] or neural models [Müller et al. 2019].

A new family of algorithms based on resampled importance sam-
pling (RIS) [Talbot 2005] instead continually evolves a population of
samples towards their optimal distribution via sample reuse within
and across frames. Ideally, each sample converges to its “perfect”
importance distribution given sufficient reuse. Such reservoir-based
spatiotemporal importance resampling (ReSTIR) algorithms work
for direct lighting [Bitterli et al. 2020], global illumination [Ouyang
et al. 2021], and volume scattering [Lin et al. 2021]. ReSTIR leverages
GPU parallelism via a streaming algorithm, reducing error up to
100× compared to equal-time renderings without reuse.

However, convergence of these randomized distributions is poorly
studied. Nabata et al. [2020] approximate convergence for Talbot
RIS with an upper bound, but only without sample reuse between
pixels. Bitterli et al. [2020] show these distributions are unbiased,
but do not prove they converge in all circumstances.

In fact, in Figure 2 we show a trivial example where sample reuse,
despite being unbiased, converges to a wrong result.
Ultimately, ReSTIR ignores a key issue: RIS assumes indepen-

dent and identically distributed (i.i.d.) samples, often from a single
source distribution. Reuse violates this independence, and ignor-
ing the assumption slows convergence or causes divergence. Prior
work empirically suggests sufficiently small correlation does not
impede convergence [Bitterli et al. 2020; Lin et al. 2021; Ouyang
et al. 2021; Wyman and Panteleev 2021]. But it remains unclear if
and when their correlation minimization efforts (e.g., randomizing
reused spatial neighbors) guarantee convergence. When resampling
for more complex lighting, maintaining sufficient decorrelation may
be impossible without a deeper theoretical understanding.

We introduce generalized resampled importance sampling (GRIS),
a new theoretical framework that lifts the i.i.d. assumption and helps
understand, design, and discuss convergence for complex samplers,

like ReSTIR. With GRIS, we can apply resampling to combine corre-
lated candidate samples, drawn from potentially different domains
and mapped to estimate a single integral (see Section 4).
Many derivations in Talbot [2005] and Bitterli et al. [2020] are

special cases of our theory; we generalize prior work while proving
conditions under which ReSTIR is unbiased and consistent.

Our main contributions include that we:
• Derive RIS with paths from other pixels by shift mappings,
• Give conditions for unbiasedness and convergence,
• Derive MIS weights satisfying the convergence constraints
and help minimize variance, (Section 4.4),
• Explain how some prior ReSTIR design decisions, e.g., M-
capping, are vital for ensuring convergence (Section 6.4),
• Show proper shift mappings help control noise when spa-
tiotemporally reusing paths (Section 7),
• Design shift mappings with improved performance and qual-
ity by BSDF lobe specific connections (Sections 7.5 and 7.6),
• Apply GRIS theory to derive our ReSTIR PT that can reuse
paths e.g., through glass.

Specifically, to guarantee convergence (see Section 5) when inte-
grating a function 𝑓 , one must:
• Use correct MIS weights during sample reuse,
• Select the target function 𝑝 so 𝑓 /𝑝 is not arbitrarily large,
• Control samples’ resampling weights𝑤𝑖 so Var [∑𝑤𝑖 ]→0,
• Ensure sufficient sample count across 𝑓 ’s domain, specifically
to have enough “canonical” samples (see Section 5.5), and
• When temporally resampling, use a reasonable𝑀-cap to limit
correlations between frames.

With our new theory and shift maps, we more efficiently reuse
samples, obtaining a robust, unbiased light transport algorithm that
can handle even very complex lighting scenarios while remaining
fully amenable to efficient GPU parallelization and real-time use
(see Figure 1). We also show that, without temporal resampling,
ReSTIR can further be used to largely accelerate offline renderers.
Our paper includes source code, allowing readers to experiment.1
While many proofs and derivations reside in our supplemental

material, Sections 4 and 5 remain mathematically dense. We have
boxed key results throughout, and starred sections (★) skippable by
readers less interested in theory. For engineers, we suggest reading
through Section 4.1 and then skipping to Section 7.

1.1 Paper Roadmap
In Section 2 we cover key background GRIS builds on, including an
overview of closely related resampling and sample reuse algorithms.
In Section 3 we briefly review the state-of-the-art in resampled

importance sampling theory and motivate the need for extending it.
In Section 4 we present our new generalization of RIS to resample

from multiple input domains Ω𝑖 into a target domain Ω, using shift
maps 𝑇𝑖 :Ω𝑖→Ω analogous to those in gradient-domain rendering.
We establish conditions under which GRIS unbiasedly integrates any
function 𝑓 defined over Ω, and conditions ensuring output sample
distributions converge to the specified target resampling PDF 𝑝 .

1https://github.com/DQLin/ReSTIR_PT
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In Section 5 we show integration error directly relates to the vari-
ance of a RIS normalization factor. When this variance disappears,
GRIS becomes a zero-variance integrator. We can achieve this by
taking additional samples from the current, canonical pixel (not just
from distant neighbors), and using robust resampling MIS weights.

By configuring ReSTIR to obey the GRIS convergence constraints,
in Section 6, we observe it becomes a non-Markovian chain, forever
exploring path space with one sample per pixel. In a still scene, aver-
aging frames converges, and real-time usage gives a single state of
the chain each frame. Cross-frame correlations hinder convergence
for offline rendering, but spatial reuse remains beneficial.
Section 7 designs shift mappings for cross-pixel path reuse, and

presents several new shift modifications to improve efficiency. Sec-
tion 8 discusses our implementation of ReSTIR PT, and Section 9
presents results and experimental validation.
Our supplemental document Section S contains mathematical

proofs and derivations, additional analysis, and more details about
our implementation. We also provide a results viewer and video.

2 BACKGROUND
Sampling, importance sampling, and sample reuse are key tomodern
renderers and form a substantial body of research in graphics. By
generalizing RIS and ReSTIR, we closely relate to resampling and
sample reuse methods; we focus discussion on those techniques
after briefly summarizing the larger context of sampling.
Our work fits into a rich history of path reuse [Bauszat et al.

2017; Bekaert et al. 2002], path guiding [Müller et al. 2017; Vorba
et al. 2014], path perturbations and mutations [Kelemen et al. 2002;
Veach and Guibas 1997], next-event estimation [Donikian et al. 2006;
Vévoda et al. 2018], ratio estimators [Heitz et al. 2018; Stachowiak
2015], bidirectional path connections [Chaitanya et al. 2018; Lafor-
tune and Willems 1993; Popov et al. 2015; Tokuyoshi and Harada
2019], light importance sampling [Peters 2021; Shirley et al. 1996],
structures to accelerate sample lookups [Jensen 2001; Moreau et al.
2019; Walter et al. 2005], low-discrepancy sampling [Heitz and Bel-
cour 2019], and online learning based sampling [Müller et al. 2019;
Pantaleoni 2020; Vorba et al. 2014; Zhu et al. 2021].
When targeting real-time, even with hardware ray tracing, im-

proving quality at iso-performance is insufficient; results with low
sample budgets need denoising [Chaitanya et al. 2017; Hasselgren
et al. 2020]. Widely used denoisers [Schied et al. 2018] work as
post-processes, discarding intermediate rendering data. Some re-
cent denoisers directly process samples from the renderer [Gharbi
et al. 2019], and resampling [Talbot 2005] or sequential Monte Carlo
[Ghosh et al. 2006] methods can be seen as filtering probability
distributions, improving sample quality in filtered regions. Gradient-
domain rendering [Hua et al. 2019; Kettunen et al. 2015; Lehtinen
et al. 2013] can also be viewed as using correlated samples to cancel
noise in path space [Kettunen 2020]. Path space filtering [Binder
et al. 2019; Pantaleoni 2020] averages path contribution over spa-
tiotemporal neighborhoods, trading variance for bias.

2.1 Resampling Algorithms
Our work generalizes recent resampling methods, which build on
sampling importance resampling (SIR) [Rubin 1987]. SIR obtains

𝑥, 𝑦 A general input to a function
x̄, x𝑖 A path and a vertex 𝑖 on the path
Ω𝑖 Domain from which samples are drawn
Ω Domain of integration of our function 𝑓
𝑋𝑖 Input sample for RIS, often a sequence (𝑋𝑖 )𝑀𝑖=1
𝑌 Sample 𝑌 selected via RIS

(𝑌 =𝑋𝑠 in the simple case or 𝑌 =𝑇𝑠 (𝑋𝑠 ) in general)
𝑀 , 𝑁 Number of input and output samples for RIS
𝑝𝑋 ( ·) Probability density of random variable 𝑋 at a location
𝑝 ( ·) Shorthand for the above when the random variable is clear
𝑝 ( ·) Unnormalized target distribution (we aim to select 𝑌 ∝𝑝)
𝑝 ( ·) Normalized target PDF (i.e., 𝑝 = 𝑝/∥𝑝 ∥1)
𝑓 ( ·) Function to integrate (e.g., the path contribution function)
𝑔𝑖 ( ·) A contribution function for 𝑋𝑖 ∈ Ω𝑖 to integrate 𝑓 in Ω
𝑊𝑖 Unbiased contribution weights; estimate reciprocal PDFs
𝑤𝑖 Resampling weights; RIS selects one 𝑋𝑖 based on 𝑤𝑖/

∑
𝑤𝑗

𝑐𝑖 Contribution MIS weights; prior works’ MIS weights
𝑚𝑖 Our new resampling MIS weights
𝑇𝑖 ( ·) A shift mapping; maps samples from domain Ω𝑖 to Ω��� 𝜕𝑇𝑖𝜕𝑥

��� Jacobian of shift mapping𝑇𝑖
𝑝←𝑖 ( ·) “𝑝 from 𝑖 .” Generalizes 𝑝 to include shift maps from Ω𝑖

𝐶 Various constants, as bounds in convergence proofs
𝑅, |𝑅 | Canonical samples and their number

Table 1. Summary of paper notation

better-distributed samples (𝑌𝑖 )𝑁𝑖=1 = (𝑌1, . . . , 𝑌𝑁 ) by subsampling
a set of i.i.d. samples (𝑋𝑖 )𝑀𝑖=1 proportional to resampling weights
𝑤𝑖 = 𝑝 (𝑋𝑖 )/𝑝 (𝑋𝑖 ), where 𝑝 (𝑥) represents a desired (potentially
unnormalized) target distribution. As𝑀 grows, the distribution of
samples 𝑌𝑖 converges to 𝑝 = 𝑝 (𝑥)/∥𝑝 ∥.2 See Guetz [2012] for an
in-depth overview of SIR. A related method is Population Monte
Carlo (PMC) [Cappé et al. 2004; Lai et al. 2007], which combines re-
sampling, mutation, and regeneration to evolve a sample population
towards a target distribution over multiple iterations.

Resampled Importance Sampling. Talbot [2005] introduces RIS,
which provides proper normalization for SIR-selected samples when
used in Monte Carlo integration. RIS extends SIR to allow sourcing
(𝑋𝑖 )𝑀𝑖=1 from different probability distributions in a single domain,
and provides multiple importance sampling (MIS) weights that en-
sure convergence to the target distribution in such cases.

Reservoir Sampling. Chao [1982] introduces a reservoir sampling
algorithm that picks a random sample from input set (𝑋𝑖 )𝑀𝑖=1 in a
single-pass streaming manner. A reservoir stores the selected sample,
current stream length𝑀 , and sum of weights𝑤𝑖 (𝑖 ≤𝑀); each new
stream element 𝑋𝑖 replaces the selected sample with probability
𝑤𝑖/

∑
𝑗≤𝑖 𝑤 𝑗 . Reservoir sampling pairs naturally with resampling;

combined they perform RIS in a streaming manner with constant
memory footprint.

Reservoir-based spatiotemporal RIS. ReSTIR [Bitterli et al. 2020]
uses chained reservoir resampling to share samples across pixels
and frames. It alternately generates new independent samples for
each reservoir (e.g., per pixel) and reuses samples between similar
reservoirs (i.e., domains). Sharing well-distributed samples across
integration domains improves sample distribution and amortizes
costs of generating initial samples. ReSTIR was first applied to direct
lighting with reuse in screen space, where the integration domains

2For functions, we use ∥ · ∥ without a subscript for the 1-norm ∥ · ∥1 (e.g., ∥𝑝 ∥).
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The RIS Algorithm Talbot et al. [2005]
Identically distributed samples

Talbot [2005]
Differently distributed samples

GRIS [Ours]
Correlations & different source domains

(1) Generate𝑀 initial candidate
samples: (𝑋1, . . . , 𝑋𝑀 )

Samples from same domain:
𝑋𝑖 ∈ Ω with same PDF 𝑝

Samples from same domain:
𝑋𝑖 ∈ Ω with different PDF 𝑝𝑖

Samples from arbitrary domains:
𝑋𝑖 ∈ Ω𝑖 ; intractable 𝑝𝑖 are OK

(2) Evaluate their unbiased
contribution weights:𝑊𝑖

𝑊𝑖 = 1/𝑝 (𝑋𝑖 ) 𝑊𝑖 = 1/𝑝𝑖 (𝑋𝑖 ) 𝑊𝑖 must unbiasedly estimate 1/𝑝𝑖 (𝑋𝑖 )

(3) Evaluate their resampling
weights:𝑤𝑖

𝑤𝑖 = 1
𝑀 𝑝 (𝑋𝑖 )𝑊𝑖 𝑤𝑖 =𝑚𝑖 (𝑋𝑖 ) 𝑝 (𝑋𝑖 )𝑊𝑖 𝑤𝑖 =𝑚𝑖 (𝑇𝑖 (𝑋𝑖 )) 𝑝 (𝑇𝑖 (𝑋𝑖 ))𝑊𝑖 |𝜕𝑇𝑖/𝜕𝑋𝑖 |

(4) Select 𝑠 proportionally to𝑤𝑖

and output 𝑌 in Ω
Simply output:

𝑌 = 𝑋𝑠

Simply output:
𝑌 = 𝑋𝑠

Output sample mapped from Ω𝑖 to Ω:
𝑌 = 𝑇𝑠 (𝑋𝑠 )

Fig. 3. We generalize Talbot’s [2005] resampled importance sampling in various ways. (Red) Basic RIS assumes i.i.d. samples 𝑋𝑖 , all drawn with
one PDF 𝑝 from the domain Ω of integrand 𝑓 . (Blue) More advanced forms allow candidates with different PDFs 𝑝𝑖 (𝑋 ), adding MIS terms𝑚𝑖 to
remain unbiased. Sample reuse, as in ReSTIR [Bitterli et al. 2020], adds correlations between candidate samples 𝑋𝑖 and requires using unbiased
estimates of 1/𝑝𝑖 (𝑋𝑖 ) for𝑊𝑖 . But current theory fails to guarantee convergence in these cases (e.g., Figure 2). (Green) Our new theory corrects this,
providing convergence guarantees even with correlated candidate samples 𝑋𝑖 from arbitrary domains Ω𝑖 and differing, intractable PDFs 𝑝𝑖 . The
unbiased estimate for the integral of 𝑓 is 𝑓 (𝑌 )𝑊𝑌 in all cases, with𝑊𝑌 defined in Equation 2.

are fixed across pixels (i.e., the surface of all lights). Recent work ex-
tends ReSTIR to world-space sample reuse [Boissé 2021; Boksansky
et al. 2021] and longer paths [Lin et al. 2021; Ouyang et al. 2021]
for global illumination, where integration domains and reasoning
about correctness become more complex.

Shift mappings. Path reuse algorithms evaluate pixel color by
reusing path samples between pixels. As in ReSTIR and RIS, the
formulation of Bekaert et al. [2002] requires path samples to come
from a shared domain, while more recent work [Bauszat et al. 2017]
allows different integration domains and explicitly defines shift
mappings to map paths between them. This better reuses complex
light transport paths including specularity from glass and mirrors.
By extending RIS and ReSTIR to utilize general shift mappings, we
handle these complexities better than Ouyang et al. [2021].
Shift mappings originally arose in gradient-domain rendering

[Kettunen et al. 2015; Lehtinen et al. 2013], where the image is re-
constructed with discrete image gradients, evaluated by subtracting
a path’s contribution from its copies shifted into adjacent pixels.
Many shift mappings have been proposed: reconnecting to the

first rough vertex [Lehtinen et al. 2013], manifold exploration shifts
[Lehtinen et al. 2013] and half-vector copying [Kettunen et al. 2015]
for specular transport, random number replay [Hua et al. 2019; Ket-
tunen et al. 2015; Manzi et al. 2016], and numerous extensions to e.g.,
bidirectional path tracing [Manzi et al. 2015], photon mapping [Gru-
son et al. 2018; Hua et al. 2017], participating media [Gruson et al.
2018], vertex connection and merging [Sun et al. 2017], and spectral
rendering [Petitjean et al. 2018]. Hua et al.’s 2019 recent survey
provides a deeper view of shift mappings and gradient-domain
rendering. Path perturbations and shift mappings also occur in Me-
tropolis Light Transport [Van de Woestijne et al. 2017; Veach and
Guibas 1997] and local QMC exploration [Tessari et al. 2017].

3 RESAMPLED IMPORTANCE SAMPLING REVIEW
Before introducing GRIS in Section 4, we first review resampled
importance sampling (RIS) using the notation and terminology of
our generalized theory. Figure 3 highlights differences between
existing theory, e.g., Talbot [2005], and our new generalization.

3.1 Identically Distributed Samples
Basic RIS takes as input a sequence of independent and identically
distributed (i.i.d) random samples (𝑋𝑖 )𝑀𝑖=1 in some domain Ω, dis-
tributed with known PDF 𝑝 . The goal is to randomly pick 𝑌 from
the sequence so that its PDF, 𝑝𝑌 , constitutes a better importance
sampler for integrating function 𝑓 over Ω.
More precisely, we define a non-negative target function 𝑝 and

choose 𝑌 randomly such that, as the input sample count𝑀 grows,
the realized PDF 𝑝𝑌 better and better approximates a normalized 𝑝
(i.e., 𝑝𝑌 approximates 𝑝 (𝑥) = 𝑝 (𝑥)/∥𝑝 ∥).

Algorithmically, from inputs 𝑋𝑖 we select one, 𝑌 = 𝑋𝑠 , with prob-
ability Pr [𝑠 =𝑖] = 𝑤𝑖/

∑𝑀
𝑗=1𝑤 𝑗 , using resampling weights𝑤𝑖 . Prior

work defines𝑤𝑖 as 𝑝 (𝑋𝑖 )/𝑝 (𝑋𝑖 ) (e.g., Bitterli et al. [2020], Eq. 5). As
weights are relative, selection probability is invariant to multiplica-
tive constants, and we define

𝑤𝑖 =
1
𝑀
𝑝 (𝑋𝑖 )𝑊𝑖 and 𝑊𝑖 =

1
𝑝 (𝑋𝑖 ) (1)

for notational consistency. The PDF of the selected sample 𝑌 is
intractable, but its unbiased contribution weight

𝑊𝑌 =
1

𝑝 (𝑌 )
𝑀∑
𝑖=1

𝑤𝑖 (2)

can be used in place of 1/𝑝𝑌 (𝑌 ) (e.g., Bitterli et al. [2020], Eq. 12).
Assuming 𝑝𝑌 > 0 where 𝑓 > 0, i.e., supp 𝑓 ⊂ supp𝑌 , we have∫

Ω
𝑓 (𝑥) d𝑦 = E [𝑓 (𝑌 )𝑊𝑌 ] . (3)

ACM Trans. Graph., Vol. 41, No. 4, Article 75. Publication date: July 2022.
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Given appropriate constraints, 𝑝𝑌 converges to 𝑝 and the Monte
Carlo variance Var [𝑓 (𝑌 )𝑊𝑌 ] asymptotically approaches the vari-
ance expected if 𝑌 had PDF exactly 𝑝 . Choosing 𝑝 proportional to 𝑓

guarantees the estimate 𝑓 (𝑌 )𝑊𝑌 is, asymptotically, zero-variance.

3.2 Differently Distributed Samples
If the samples𝑋𝑖 have different PDFs 𝑝𝑖 , the situation becomes more
complex. This requires what we call resampling MIS, a partition of
unity with weights𝑚𝑖 , for𝑚𝑖 ≥ 0 and

𝑀∑
𝑖=1

𝑚𝑖 (𝑥) = 1 (4)

for all 𝑥 in 𝑝’s support. Talbot [2005] proposes weights analogous
to Veach’s [1998] balance heuristic,

𝑚𝑖 (𝑥) = 𝑝𝑖 (𝑥)∑𝑀
𝑗=1 𝑝 𝑗 (𝑥)

. (5)

The key algorithmic change is then replacing the 1/𝑀 term in𝑤𝑖

(Equation 1) with these MIS weights (see Figure 3, blue column), i.e.,

𝑤𝑖 =𝑚𝑖 (𝑋𝑖 ) 𝑝 (𝑋𝑖 )𝑊𝑖 and 𝑊𝑖 =
1

𝑝𝑖 (𝑋𝑖 ) . (6)

Assuming at least one PDF 𝑝𝑖 covers each 𝑥 ∈ supp𝑝 , Equation 3
holds with𝑊𝑌 from Equation 2 using these updated 𝑤𝑖 . Conver-
gence requires more assumptions than in Section 3.1, but is achiev-
able (e.g., Section 5.7).

3.3 Why Generalize Resampling?
Early applications of RIS, e.g., for BSDF importance sampling, aim
to choose a 𝑝 that cheaply approximates 𝑓 so that resampling from
multiple cheaply generated candidates speeds convergence.
ReSTIR, however, reuses samples across pixels to amortize costs

for simultaneous estimation of multiple integrals. With this goal, 𝑝
need not be simpler than 𝑓 , if reusing prior samples is cheaper than
generating a new one. ReSTIR also gains efficiency if a reused sam-
ple’s PDF better approximates the target integrand. Due to iterative
use of RIS, in such cases, using 𝑝 = 𝑓 may be reasonable, especially
for complex paths (e.g., Lin et al. [2021]).
Talbot’s RIS theory assumes independent samples 𝑋𝑖 lying in a

shared domain Ω. ReSTIR stretches these assumptions, so it may
not retain any theoretical convergence guarantees. In fact, with
seemingly innocuous algorithmic modifications, correlated reuse
can cause convergence to a wrong result.

4 GENERALIZED RIS
Our generalized resampled importance sampling (GRIS) allows map-
ping samples between domains and identifies the constraints for
which this is unbiased and converges.

Unlike traditional RIS, which selects from independent samples
in one domain, we allow potentially correlated inputs (𝑋𝑖 )𝑀𝑖=1 from
different domains Ω𝑖 . Generalized RIS randomly selects sample 𝑋𝑠
and maps it to 𝑓 ’s domain Ω via a shift mapping, 𝑌 =𝑇𝑠 (𝑋𝑠 ), so that
the PDF of 𝑌 approaches target 𝑝 (i.e., a normalized 𝑝).

4.1 Overview
Before delving into theoretical details for our generalization, we
briefly overview our approach and relate it to traditional RIS.

We assume input samples 𝑋𝑖 , perhaps from varying domains Ω𝑖 ,
need not be independent and are paired with unbiased contribution
weights𝑊𝑖 ∈R that can replace 1/𝑝𝑖 (𝑋𝑖 ) for integration. This ex-
plicitly allows prior resampled inputs; while a resampled input 𝑋𝑖
has an intractable PDF 𝑝𝑖 , its weight𝑊𝑖 is tractable (i.e., Equation 2).
We formalize unbiased contribution weights in Section 4.2.

To reuse samples to integrate 𝑓 over Ω, we must map our random
samples 𝑋𝑠 ∈ Ω𝑠 into Ω with a shift mapping 𝑇𝑠 : Ω𝑠 → Ω. This
shift modifies the PDF via the PDF transformation laws,3★ requiring
the shift map’s Jacobian determinant, |𝜕𝑇𝑖/𝜕𝑥 |. We formalize shift
mappings in Section 4.3.

Algorithmically, this changes various aspects of RIS (see Figure 3,
green column). We must transform samples to a common domain Ω,
so resampling weights include shift maps𝑇𝑖 and their determinants:

𝑤𝑖 =𝑚𝑖 (𝑇𝑖 (𝑋𝑖 )) 𝑝 (𝑇𝑖 (𝑋𝑖 ))𝑊𝑖 · |𝜕𝑇𝑖/𝜕𝑋𝑖 | . (7)

We do not require tractable 𝑝𝑖 ; we may use𝑊𝑖 = 1/𝑝𝑖 (𝑋𝑖 ), but we
may also use numerical contributionweights𝑊𝑖 from e.g., a prior RIS
pass (Equation 2). Before using the selected sample for integration
(or further resampling), we must shift it to the appropriate domain,
i.e., our output sample is 𝑌 = 𝑇𝑠 (𝑋𝑠 ).

Unbiased contributionweights𝑊𝑌 for output𝑌 are again given by
Equation 2. With the constraints we derive below, 𝑝𝑌 converges to 𝑝
such that Var[𝑓 (𝑌 )𝑊𝑌 ] is guaranteed to approach Var[𝑓 (𝑌 )/𝑝 (𝑌 )].
This achieves asymptotic zero-variance integration with a single 𝑌
if 𝑝∝ 𝑓 .

4.2 Unbiased Integration with Generalized RIS
Again, we assume potentially correlated input samples (𝑋𝑖 ∈Ω𝑖 )𝑀𝑖=1
with arbitrary source domains Ω𝑖 . Furthermore, samples 𝑋𝑖 must
be paired with unbiased contribution weights𝑊𝑖 , acting as replace-
ments for potentially intractable reciprocal PDFs 1/𝑝𝑖 (𝑋𝑖 ).

We first derive an unbiased integrator for function 𝑓 over domain
Ω, assuming almost arbitrary resampling weights𝑤𝑖 . In Section 4.4,
we replace these arbitrary𝑤𝑖 with weights that lead to asymptotic
convergence to the target PDF 𝑝 .

We formally define unbiased contribution weights𝑊𝑖 as follows:

Definition 4.1. An unbiased contribution weight𝑊 ∈R for a ran-
dom variable 𝑋 ∈Ω is any real-valued random variable𝑊 for which

E [𝑓 (𝑋 )𝑊 ] =
∫

supp(𝑋 )
𝑓 (𝑥) d𝑥 (8)

for any integrable function 𝑓 : Ω → R.
The expression 𝑓 (𝑋 )𝑊 generalizes the ratio 𝑓 (𝑋 )/𝑝 (𝑋 ) in Monte

Carlo integration: if 𝑝 is tractable, we can use𝑊 = 1/𝑝 (𝑋 ). If not, as
when picking 𝑋 with RIS, these weights still allow unbiased integra-
tion. The integral is naturally limited to where 𝑝 > 0, i.e., supp(𝑋 ).
Similar definitions have been used outside computer graphics, e.g.,
Liu and Liu [2001] and Liang and Cheon [2009]. Apart from the

3★With 𝑦 = 𝑇 (𝑥) , we have 𝑃𝑌 (𝑦) =
��� 𝜕𝑃𝜕𝑦

��� = �� 𝜕𝑃
𝜕𝑥

�� ��� 𝜕𝑥𝜕𝑦
��� = 𝑃𝑋 (𝑥)

�� 𝜕𝑇
𝜕𝑥

��−1 .
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reciprocal PDF estimates in RIS, the conditional PDFs in the contin-
uous multiple importance sampling framework [West et al. 2020]
are also examples of unbiased contribution weights.
Unbiased contribution weights naturally replace the reciprocal

of the marginal PDF; in fact, they unbiasedly estimate it,

E [𝑊 | 𝑋 ] = 1
𝑝𝑋 (𝑋 )

. (9)

This is not coincidence, but equivalence. Any unbiased estimator for
the reciprocal marginal PDF (Equation 9) is an unbiased contribution
weight (Equation 8) and vice versa (Theorem A.1).

In RIS, we resample 𝑋𝑖 proportionally to𝑤𝑖 . We need to express
the contribution of chosen sample𝑋𝑠 that gives an unbiased estimate
for the integral of 𝑓 . To do this, we start by assigning each sample
𝑋𝑖 a corresponding contribution function 𝑔𝑖 : Ω𝑖 → R that gets
evaluated if selecting index 𝑠 = 𝑖 .
We then look at the expectation of 𝑔𝑠 (𝑋𝑠 )𝑊𝑠 divided by the RIS

selection probability of index 𝑠 . The PMF of the selection index is
𝑝𝑠 (𝑖) = 𝑤𝑖/

∑𝑀
𝑗=1𝑤 𝑗 , and with some caution,4★ we get

E

[
𝑔𝑠 (𝑋𝑠 )𝑊𝑠

𝑝𝑠 (𝑠)

]
= E

[
𝑀∑
𝑖=1

𝑔𝑖 (𝑋𝑖 )�
��𝑝𝑠 (𝑖)

���𝑝𝑠 (𝑖)
𝑊𝑖

]
=

=
𝑀∑
𝑖=1

∫
supp(𝑋𝑖 )

𝑔𝑖 (𝑥𝑖 ) d𝑥𝑖 , (10)

The first step expands the expectation as a sum over the possible
cases, and the second step utilizes the definition of unbiased con-
tribution weights to transform the sum of expectations into a sum
of integrals. RIS naturally skips sampling areas where the random
variables have zero PDF, limiting integration to the supports of 𝑋𝑖 .
Equipped with this result, we can now proceed to transform the
remaining sum of integrals into the desired integral of 𝑓 by carefully
choosing unknowns 𝑔𝑖 .
Choosing 𝑔𝑖 so the right-hand-side becomes the integral of 𝑓

yields an unbiased contribution for the selected sample 𝑌 =𝑋𝑠 . In
the special case that 𝑋𝑖 are all from the same domain Ω and support
𝑆 , and all𝑤𝑖 are positive in 𝑆 , we can recover basic RIS by choosing
𝑔𝑖 = 1

𝑀 𝑓 for all 𝑖 , giving:

E

[
1
𝑀

𝑓 (𝑌 )
∑𝑀

𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠

]
=

∫
supp(𝑌 )

𝑓 (𝑥) d𝑥 . (11)

Comparing to Equation 8, we observe that in this restricted case the
expectation is of form E[𝑓 (𝑌 )𝑊𝑌 ] with

𝑊𝑌 =
1
𝑀

∑𝑀
𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠 , (12)

making𝑊𝑌 an unbiased contribution weight for 𝑌 , i.e., E[𝑓 (𝑌 )𝑊𝑌 ]
integrates any function 𝑓 over the support of 𝑌 . In Section 4.3, we
extend our result to samples 𝑋𝑖 coming from multiple domains Ω𝑖 .

4★Technically, this equation requires that 𝑤𝑖 > 0 whenever 𝑔𝑖 (𝑋𝑖 ) ≠ 0, but we will
later introduce a partition of unity that lifts this requirement.

Degenerate case. If all 𝑤𝑖 are 0, no sample is selected and the
contribution is zero. Intuitively, one may think of returning a zero-
contribution null-sample 𝑌∅ outside the sampling and integration
domains (i.e., 𝑝 (𝑌∅) = 𝑓 (𝑌∅) = 0). The value of𝑊𝑌∅ is then irrele-
vant, and can be set to zero.

4.3 Shift Mapping
In GRIS, samples 𝑋𝑖 may originate from arbitrary domains Ω𝑖 . To
integrate 𝑓 : Ω→R with samples 𝑋𝑖 ∈ Ω𝑖 , we must transform the
right-hand side of Equation 10 into the integral of 𝑓 . To do this, we
choose 𝑔𝑖 that map 𝑋𝑖 from Ω𝑖 to Ω and evaluate 𝑓 at the result.

Since a map from Ω𝑖 to Ω changes the variables of integration, it
must be bijective. Mappings between complicated domains can be
non-trivial to construct, so we settle for a bijection from a subset of
Ω𝑖 to its image in Ω. As in prior work (e.g., Manzi et al. [2014]), we
call such bijections shift mappings, 𝑇𝑖 , and associate one with each
domain Ω𝑖 .

Definition 4.2. A shift mapping 𝑇𝑖 from Ω𝑖 to Ω is a bijective
function from a subset D(𝑇𝑖 ) ⊂ Ω𝑖 to its image I(𝑇𝑖 ) ⊂ Ω.

Intuitively, we should choose contribution functions

𝑔𝑖 (𝑥) = 𝑐𝑖 (𝑦𝑖 ) 𝑓 (𝑦𝑖 )
���� 𝜕𝑇𝑖𝜕𝑥

���� , (13)

where 𝑦𝑖 is shorthand for𝑇𝑖 (𝑥), contribution MIS weights 𝑐𝑖 : Ω→R
are an arbitrary partition of unity

∑𝑀
𝑖=1 𝑐𝑖 (𝑦)=1 for 𝑦 ∈Ω, and

��� 𝜕𝑇𝑖𝜕𝑥

���
is the Jacobian determinant of 𝑥 ↦→ 𝑦𝑖 . In principle, this implements

𝑀∑
𝑖=1

∫
Ω𝑖

𝑔𝑖 (𝑥) d𝑥 =
∫
Ω
𝑓 (𝑥) d𝑥, (14)

but care is required in the details; e.g., Equation 13 is not defined
for 𝑥 ∉D(𝑇𝑖 ). We fix this by defining 𝑔𝑖 (𝑥) = 0 for 𝑥 ∉D(𝑇𝑖 ) and
updating the contribution MIS weights 𝑐𝑖 to compensate.
We assume weights𝑤𝑖 are arbitrary non-negative random vari-

ables related to target function 𝑝 as follows: 𝑤𝑖 > 0 iff 𝑋𝑖 ∈ D(𝑇𝑖 )
and 𝑝 (𝑌𝑖 ) > 0. Essentially, 𝑤𝑖 > 0 when 𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 ) exists and is in
the support of 𝑝 , otherwise 𝑤𝑖 =0 to avoid choosing 𝑋𝑖 . Later, we
slightly relax this constraint.

Under these assumptions, each possible 𝑌 must be in supp 𝑝 and
be samplable as 𝑌 = 𝑇𝑖 (𝑋𝑖 ) by one or more 𝑋𝑖 that has positive PDF
(i.e., 𝑋𝑖 ∈ supp𝑋𝑖 ), and vice versa. Mathematically,5★

supp𝑌 = supp𝑝 ∩
𝑀⋃
𝑖=1

𝑇𝑖 (supp𝑋𝑖 ) . (15)

This implies supp𝑌 ⊂ supp𝑝 . Later, we assume supp𝑝 ⊂ supp𝑌 ,
which also implies supp𝑌 = supp𝑝 .

Carefully substituting the above 𝑔𝑖 , with 𝑔𝑖 (𝑥) = 0 if 𝑥 ∉ D(𝑇𝑖 ),
into the left-hand side of Equation 10, this gives the equality

E

[
𝑐𝑠 (𝑌 ) 𝑓 (𝑌 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����
∑𝑀

𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠

]
=

∫
supp(𝑌 )

𝑓 (𝑥) d𝑥, (16)

where𝑊𝑠 is the unbiased contribution weight of 𝑋𝑠 .
5★If supp𝑋𝑖 is larger than the domain of 𝑇𝑖 , we set 𝑇𝑖 (supp𝑋𝑖 ) = 𝑇𝑖 (supp𝑋𝑖 ∩
D(𝑇𝑖 )) .
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Normalized with MISPartial overlaps

Fig. 4. Unbiased integration with candidate samples from multiple
domains. The domain would be covered unevenly without contribu-
tion MIS weights 𝑐𝑖 . Similar weighting is used for sample selection
probabilities with resampling MIS weights𝑚𝑖 in Section 4.4.

The constraints that contribution MIS weights 𝑐𝑖 must fulfill for
this to hold are that for all 𝑦 ∈ supp𝑌 ,

𝑀∑
𝑖=1

𝑦∈𝑇𝑖 (supp𝑋𝑖 )

𝑐𝑖 (𝑦) = 1. (17)

Interpret this as: every realizable 𝑦, possibly from multiple Ω𝑖 ,
must be covered exactly once in total (see Figure 4 for an illustration).
The summation only accounts for domains Ω𝑖 from which 𝑦 can
be realized as 𝑦 = 𝑇𝑖 (𝑥𝑖 ) with non-zero PDF. In principle, negative
values of 𝑐𝑖 work, but later we find that only 𝑐𝑖 ≥ 0 allow chaining
multiple passes of GRIS.

Again, the expectation in Equation 16 is of the form E[𝑓 (𝑌 )𝑊𝑌 ]
for arbitrary integrable function 𝑓 in Ω, and the right-hand side
integrates 𝑓 over the support of 𝑌 , per the definition of unbiased
contribution weights in Equation 8. This means that with

𝑊𝑌 = 𝑐𝑠 (𝑌 )
(
𝑊𝑠

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����
) [∑𝑀

𝑗=1𝑤 𝑗

𝑤𝑠

]
, (18)

𝑓 (𝑌 )𝑊𝑌 unbiasedly estimates the integral of 𝑓 over the support of
𝑌 , and that𝑊𝑌 is an unbiased estimate for 1/𝑝𝑌 (𝑌 ).

This specifies when generalized RIS can integrate an arbitrary
function 𝑓 : when the supports of random variates 𝑋𝑖 (mapped to Ω
via 𝑇𝑖 ) together cover the support of 𝑓 .

This is automatically fulfilled if we choose one sampling domain,
say Ω1, as 𝑓 ’s domain, use the identity shift 𝑇1 (𝑥) = 𝑥 on Ω1, and
generate 𝑋1 with an importance sampler designed for the integrand
𝑓 , i.e., so that 𝑝 (𝑥1) > 0 whenever 𝑓 (𝑥1) > 0; we will later call such
samples canonical. Since 𝑝𝑋1 is known, we can use the unbiased
contribution weight𝑊1 = 1/𝑝𝑋1 (𝑋1).

We later show earlier ReSTIR samplers can, a posteriori, be built
on these observations, but first Section 4.4 covers how to realize
convergence to target density 𝑝 by setting𝑤𝑖 with Equation 19. The
corresponding𝑊𝑌 is then given by Equation 22.

Relaxing constraints ★. The condition that𝑤𝑖 >0 when 𝑝 (𝑌𝑖 )>0,
for𝑌𝑖 =𝑇𝑖 (𝑋𝑖 ), can be relaxed by also allowing𝑤𝑖 =0when 𝑐𝑖 (𝑌𝑖 ) = 0
or𝑊𝑖 = 0, i.e., when the expectation does not change. The validity of
Equation 17must be explicitly guaranteed in supp𝑝∩⋃𝑖 𝑇𝑖 (supp𝑋𝑖 )
to make Equation 15 hold. We derive these constraints and the
unbiasedness of the estimator in Section S.7.1. Using the 𝑤𝑖 from
the next section removes the need for these constraints.

4.4 Asymptotically Perfect Importance Sampling ★
Above, we generalized RIS to multiple domains for unbiased integra-
tion with near-arbitrary weights. Like Talbot’s RIS, the goal of GRIS
is producing samples following a desired distribution; we want the
marginal probability density 𝑝𝑌 of output sample 𝑌 to converge to
𝑝 as the input sample count approaches infinity.

We show this occurs with the following resampling weights:

𝑤𝑖 =

{
𝑚𝑖 (𝑇𝑖 (𝑋𝑖 )) 𝑝 (𝑇𝑖 (𝑋𝑖 ))𝑊𝑖 ·

��� 𝜕𝑇𝑖𝜕𝑋𝑖

��� , if 𝑋𝑖 ∈ D(𝑇𝑖 )
0, otherwise

, (19)

given resamplingMISweights𝑚𝑖 and unbiased contributionweights
𝑊𝑖 . As normalizing 𝑤𝑖 gives resampling probabilities, 𝑤𝑖 must be
non-negative. It follows that𝑚𝑖 and𝑊𝑖 must also be non-negative
(proofs in Section S.7.2), which we assume hereafter.

Weight𝑤𝑖 will be zero outside of supp𝑝 , as 𝑝 = 0. Requirements
for𝑚𝑖 are similar to those for 𝑐𝑖 . For all 𝑦 in supp𝑌 ,

𝑀∑
𝑖=1

𝑦∈𝑇𝑖 (supp𝑋𝑖 )

𝑚𝑖 (𝑦) = 1, (20)

but we also require𝑚𝑖 ≥ 0. The sum only includes indices that can
generate 𝑦 with a positive PDF. Unbiased integration also requires
𝑚𝑖 (𝑦) > 0 whenever 𝑐𝑖 (𝑦) ≠ 0 so the 𝑚𝑖 do not invalidate the
partition of unity formed by 𝑐𝑖 (proof in Section S.7.3).

Directly substituting𝑤𝑖 from Equation 19 into Equation 18 yields
the unbiased contribution weight for new sample 𝑌 ,

𝑊𝑌 =

[
𝑐𝑠 (𝑌 )
𝑚𝑠 (𝑌 )

]
1

𝑝 (𝑌 )
𝑀∑
𝑗=1

𝑤 𝑗 . (21)

The condition that𝑚𝑖 (𝑦) > 0 when 𝑐𝑖 (𝑦) ≠ 0 now naturally avoids
division by zero. Next, we show that choosing 𝑚𝑖 = 𝑐𝑖 is ideal,
naturally fulfilling this requirement.
𝑊𝑌 in Equation 21 has multiple sources of variance. The sum∑𝑀
𝑗=1𝑤 𝑗 varies with inputs 𝑋 𝑗 and the ratio 𝑐𝑠 (𝑌 )/𝑚𝑠 (𝑌 ) varies

with index 𝑠 . Asymptotically approaching the desired sample density
𝑝 requires the sum variance Var[∑𝑀

𝑗=1𝑤 𝑗 ] to approach zero. Even if
fixing this sum as a constant, ratio 𝑐𝑠 (𝑌 )/𝑚𝑠 (𝑌 ) can add significant
variance. This disappears by selecting 𝑐𝑖 (𝑦) =𝑚𝑖 (𝑦).

Our improved and simpler unbiased contribution weight for GRIS
becomes

𝑊𝑌 =
1

𝑝 (𝑌 )
𝑀∑
𝑗=1

𝑤 𝑗 , (22)

which we used to reformulate traditional RIS (Equation 2) to prepare
for this generalization. We use this expression for𝑊𝑌 hereafter.6
This allows deriving Theorem A.2 in Appendix A, which guar-

antees asymptotic convergence of 𝑝𝑌 , the PDF of resampled 𝑌 , to
𝑝: consider the behavior of a sequence of resampling results 𝑌𝑀
(with supp 𝑝 ⊂ supp𝑌𝑀 ) as𝑀 increases. If variance of the summed

6The unbiased contribution weights in Equation 22 skip the division by𝑀 often seen in
RIS and ReSTIR formulas, as ourweights𝑤𝑗 already include this factor in the resampling
MIS weights𝑚𝑖 (Equation 19); selecting𝑚𝑖 = 1/𝑀 gives the prior formulations.
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resampling weights goes to zero,

Var
[
𝑀∑
𝑖=1

𝑤𝑀,𝑖

]
𝑀→∞−−−−−→ 0, (23)

then 𝑝 (𝑌 )/𝑝𝑌 (𝑌 ) converges to 1 in the mean-square sense.7★ This
sum approximates the integral of 𝑝:

E

[
𝑀∑
𝑖=1

𝑤𝑖

]
= E [𝑝 (𝑌 )𝑊𝑌 ] =

∫
supp𝑌

𝑝 (𝑦) d𝑦 = ∥𝑝 ∥. (24)

Increasing input sample count𝑀 adds more terms to the sum; this
tends to make each𝑤𝑖 smaller. Convergence of 𝑝𝑌 to 𝑝 is subject to∑𝑀
𝑖=1𝑤𝑖 approaching ∥𝑝 ∥ as Var

[∑𝑀
𝑖=1𝑤𝑖

] −→ 0, i.e.,

𝑊𝑌 =
1

𝑝 (𝑌 )
𝑀∑
𝑗=1

𝑤 𝑗 ≈ ∥𝑝 ∥
𝑝 (𝑌 ) =

1
𝑝 (𝑌 ) for large𝑀 . (25)

The guarantee from Equation 23 is quite strong. While conver-
gence of 𝑝𝑌 to 𝑝 may not be pointwise (new samples may introduce
temporary fluctuations), the probability of errors of any given size
approaches zero, and each subset of Ω will, asymptotically, receive
the correct ratio of samples.
In addition, as shown in Section 5.2, integration variance also

goes to zero (if 𝑝 ∝ 𝑓 ), i.e., in the limit we get the variance expected
if 𝑌 were exactly distributed with target PDF 𝑝 .

5 CONVERGENCE AND VARIANCE ANALYSIS ★
Above we presented a new GRIS theory and conditions for asymp-
totic convergence to a target distribution, but we have yet to discuss
its asymptotic behavior as an integral estimator, particularly for
Monte Carlo sampling. As infinite sample counts are impractical,
we also want to analyze variance when using finitely many samples.

5.1 Reasonable Distributions ★
Before studying variance, we start by formally defining a reasonable
importance sampling distribution:

Definition 5.1 (Reasonable distribution). We say a PDF 𝑝 is a
reasonable importance sampling distribution for a non-negative
function 𝑓 (or 𝑝 is reasonable for [integrating] 𝑓 ) if a bound 𝐶𝑓
exists such that

𝑓 (𝑥) ≤ 𝐶𝑓 𝑝 (𝑥) for all 𝑥 . (26)

We also say a random variate 𝑋 with unbiased contribution weight
𝑊𝑋 is reasonably distributed for 𝑓 , if there exists a bound 𝐶𝑓

𝑓 (𝑋 )𝑊𝑋 ≤ 𝐶𝑓 with probability 1. (27)

Essentially, a reasonable distribution guarantees bounded Monte
Carlo contributions. In standard Monte Carlo, 𝑓 (𝑋 )/𝑝 (𝑋 ) ≤ 𝐶𝑓 ,
and for unbiased contribution weights, 𝑓 (𝑋 )𝑊𝑋 ≤ 𝐶𝑓 .

7★Mathematically, this means E
[��� 𝑝 (𝑌𝑀 )

𝑝𝑌 (𝑌𝑀 ) − 1
���2
]

𝑀→∞−−−−−→ 0.

5.2 Asymptotic Variance of Integral Estimation ★

Asymptotic convergence of distribution 𝑝𝑌 naturally gets reflected
in integration variance. Assuming 𝑝 is a reasonable distribution for
function 𝑓 , then the unbiased integral estimate 𝑓 (𝑌 )𝑊𝑌 asymptot-
ically has variance due only to any mismatch of 𝑝 and 𝑓 . If 𝑝 is
chosen proportional to 𝑓 , then 𝑝 ∝ 𝑓 and estimate 𝑓 (𝑌 )𝑊𝑌 will be
asymptotically zero-variance.
We formalize this in Theorem A.3. Convergence of 𝑝𝑌 to 𝑝 is

provided by Theorem A.2, and if 0 ≤ 𝑓 ≤ 𝐶𝑓 𝑝 for some 𝐶𝑓 > 0,
then

Var [𝑓 (𝑌 )𝑊𝑌 ] 𝑀→∞−−−−−→ Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
, (28)

where 𝑋 has density 𝑝 . The zero-variance result follows naturally if
𝑓 (𝑥)/𝑝 (𝑥) is constant.

A key takeaway is that if 𝑝 is not proportional to 𝑓 , increasing the
input sample count eventually leads to diminishing returns; further
variance reduction requires choosing a 𝑝 better matching 𝑓 .

5.3 Variance in the Finite Case ★
Above, we studied the asymptotic behavior of GRIS as sample count
increaseswithout bound. In practice, we are limited to finite𝑀 , sowe
aim to minimize variance in some computation budget. Fortunately,
we may give explicit variance bounds for our integral estimate:

Theorem 1. With the assumptions of Theorem A.3,

Var [𝑓 (𝑌 )𝑊𝑌 ] ≤ Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
+ 𝑏, (29)

where 𝑋 is distributed with density 𝑝 and

𝑏 = 𝐶2
𝑓

√√√
Var

[
𝑀∑
𝑖=1

𝑤𝑖

] ©­­«
∥𝑝 ∥ + 2

√√√
Var

[
𝑀∑
𝑖=1

𝑤𝑖

]ª®®¬
. (30)

Proof. Section S.5.4. □

Here, 𝐶𝑓 is the bounding constant for a reasonable distribution
𝑝 for 𝑓 . Theorem 1 says resampling converges to 𝑝 by decreasing
Var[∑𝑀

𝑖=1𝑤𝑖 ], which acts as a concrete proxy for the current conver-
gence state. As Var[∑𝑀

𝑖=1𝑤𝑖 ] approaches zero, remaining variance
stems from potential mismatches between 𝑝 and 𝑓 .
The law of total variance provides another decomposition of

variance; applied to 𝑓 (𝑌 )𝑊𝑌 , we get

Var[𝑓 (𝑌 )𝑊𝑌 ] = Var
[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
+ E [

𝑓 (𝑌 )2 Var [𝑊𝑌 | 𝑌 ]
]
, (31)

which says variance has two sources: mismatches between 𝑓 and
marginal density 𝑝𝑌 , and Var [𝑊𝑌 | 𝑌 ], the mean squared deviation
of𝑊𝑌 from its conditional expectation 1/𝑝 (𝑌 ). Intuitively, if𝑊𝑌

approaches 1/𝑝 (𝑌 ) such that Var[𝑊𝑌 | 𝑌 ] goes to zero, naturally
Var[𝑓 (𝑌 )𝑊𝑌 ] also approaches Var[𝑓 (𝑌 )/𝑝 (𝑌 )].

For the special case of equality 𝑓 (𝑥) = 𝐶𝑓 𝑝 (𝑥), we can derive the
exact variance (using Equation 22),

Var [𝑓 (𝑌 )𝑊𝑌 ] = Var
[
𝑓 (𝑌 )
𝑝 (𝑌 )

𝑀∑
𝑖=1

𝑤𝑖

]
= 𝐶2

𝑓 Var
[
𝑀∑
𝑖=1

𝑤𝑖

]
. (32)
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Independent of 𝑝’s proportionality to 𝑓 , our analysis shows the
importance of reducing Var[∑𝑖 𝑤𝑖 ] given finite samples. In practice,
we can minimize variance by making𝑤𝑖 more uniform. In particular,
preventing singularities in𝑤𝑖 avoids unbounded variance.

5.4 Avoiding Singularities ★
Generalized RIS does not automatically remove singularities from
Monte Carlo integration. As usual, avoiding large outliers requires
additional guarantees. More concretely, if

∑𝑀
𝑖=1𝑤𝑖 is unbounded,

the contribution

𝑓 (𝑌 )𝑊𝑌 =
𝑓 (𝑌 )
𝑝 (𝑌 )

𝑀∑
𝑖=1

𝑤𝑖 (33)

can also be unbounded.
Clearly, very large 𝑤𝑖 are detrimental to our goal of bringing

Var[∑𝑀
𝑖=1𝑤𝑖 ] to zero; we should aim to make the weight sum,
𝑀∑
𝑖=1

𝑤𝑖 =
𝑀∑
𝑖=1

𝑋𝑖 ∈D(𝑇𝑖 )

𝑚𝑖 (𝑇𝑖 (𝑋𝑖 )) · 𝑝 (𝑇𝑖 (𝑋𝑖 ))𝑊𝑖 ·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� , (34)

as uniform as possible. Going through the terms, we identify poten-
tial challenges to maintaining uniformity:

(1) Some samples 𝑦 may be reachable via only finitely many 𝑇𝑖
even in the limit

(2) Resampling MIS weights𝑚𝑖 can greatly exceed 1/𝑀
(3) The product 𝑝 (𝑇𝑖 (𝑋𝑖 ))𝑊𝑖 can be unbounded
(4) Jacobians can be unbounded

These can be tackled one-by-one, e.g., (1) adding samples from all
source domains when increasing 𝑀 , and (4) modifying shift map
domains to cut off extreme Jacobians (while maintaining bijectivity).

Instead, we simultaneously solve all four by designing a suitable
sampling scheme and two robust MIS weight families. This guar-
antees bounded contributions, asymptotic convergence to 𝑝 , and
realizes asymptotic zero-variance integration with samples from
multiple domains.

5.5 Canonical Samples ★
Designing MIS weights for samples arising from multiple strategies
normally requires knowing PDFs for samples with all strategies.
Resampling gives up access to such PDFs. Instead, we design ro-
bust MIS weights by assuming samples 𝑋𝑖 are associated with non-
negative unnormalized target distributions 𝑝𝑖 , much like 𝑝 , that act
as proxies for 𝑝𝑋𝑖 .

RIS, and our generalization, conceptually need an infinite stream
of random samples to asymptotically converge to desired distribu-
tion 𝑝 . If a subset of supp 𝑝 is covered by this stream only finitely
many times, 𝑝𝑌 can not generally converge to 𝑝 in this subset.
Sometimes, as in light transport, covering the support of 𝑝 with

samples 𝑋𝑖 from other domains Ω𝑖 may be challenging. By taking
samples from an importance sampler that directly targets 𝑝 , we can
cover supp𝑝 as many times as needed for convergence. We define
samples 𝑋𝑖 that directly target 𝑝 in Ω with the identity shift map
and 𝑝𝑖 = 𝑝 to be canonical, motivated by Bitterli [2021], and present
the following mathematical definition:

Definition 5.2 (Canonical Sample). An input sample 𝑋𝑖 ∈ Ω𝑖 is
canonical if its domain is Ω, it uses the identity shift map 𝑇𝑖 (𝑥) = 𝑥 ,
uses 𝑝𝑖 = 𝑝 , and covers supp𝑝 (i.e., supp𝑝 ⊂ supp𝑋𝑖 ).

We denote the set of indices of canonical samples in 1, . . . , 𝑀 by
𝑅 and their number by |𝑅 |. Later, we find that if canonical sample
count increases sufficiently as the total input count increases, the
MIS weights in Section 5.6 guarantee asymptotic convergence of
𝑝𝑌 to 𝑝 when resampling from multiple domains.

5.6 Designing Robust MIS Weights ★
As motivated in Section 5.4, we design resampling MIS weights to
guarantee bounded contribution for the chosen sample 𝑌 , assuming
input samples 𝑋𝑖 are reasonably distributed for target functions 𝑝𝑖 .
To simplify the derivation, we define a new symbol, “𝑝 from 𝑖”,

𝑝←𝑖 (𝑦) =
{

𝑝𝑖
(
𝑇−1
𝑖 (𝑦)

) ��𝜕𝑇−1
𝑖 /𝜕𝑌𝑖

��, if 𝑦 ∈ 𝑇𝑖 (supp𝑋𝑖 )
0 otherwise , (35)

i.e. for the sample𝑦, evaluate its proxy PDF 𝑝𝑖 at the sample location
𝑥 in the original domain Ω𝑖 , multiplied by the Jacobian determinant
of the shift.
We aim to bound the resampling weights𝑤𝑖 and construct two

families of MIS weights that guarantee this. We then derive their
upper bounds, which decrease with additional canonical samples.
Later, we utilize these bounds to guarantee convergence of 𝑝𝑌 to 𝑝 .

Generalized Talbot MIS. The first family, which we derive in Sec-
tion S.1, generalizes the weights of Talbot [2005] into the following:

𝑚𝑖 (𝑦) = 𝑝←𝑖 (𝑦)∑𝑀
𝑗=1 𝑝←𝑗 (𝑦)

. (36)

Talbot’s [2005] form is obtained by assuming independent samples
over one domain (Ω𝑖 = Ω, 𝑇𝑖 (𝑥) = 𝑥) and using exact PDFs 𝑝𝑘 in
place of 𝑝←𝑘 . This MIS family is analogous to the balance heuristic
[Veach 1998] between possible sources of sample 𝑌 .

Generalized pairwise MIS. The second family of MIS weights,
derived in Section S.1, generalizes Bitterli’s [2021] pairwise MIS,
originally given for a single canonical sample and domain (|𝑅 | = 1,
Ω𝑖 = Ω,𝑇𝑖 (𝑥) = 𝑥 ) for the defensive variant below. The key benefit of
pairwise MIS is a significant cost reduction from𝑂 (𝑀2) to𝑂 (𝑀 |𝑅 |).
This comes from restricting application of MIS to individual pairs
of target functions, each involving only the target 𝑝 and the source
𝑝←𝑖 , if 𝑖 is not a canonical sample, and an average of MIS between
pairs (𝑝, 𝑝←𝑗 ) otherwise. We discuss the generalized pairwise MIS
family more in Section S.1, but present here the uniform variant,
which gives all inputs equal weight if they have the same 𝑝 (←)
values,

𝑚𝑖 (𝑦) =



1
𝑀−|𝑅 |

∑
𝑗∉𝑅

𝑝 (𝑦)
|𝑅 |𝑝 (𝑦)+(𝑀−|𝑅 |)𝑝←𝑗 (𝑦) , if 𝑖 ∈ 𝑅

𝑝←𝑖 (𝑦)
|𝑅 |𝑝 (𝑦)+(𝑀−|𝑅 |)𝑝←𝑖 (𝑦) , if 𝑖 ∉ 𝑅

, (37)

and a slightly less efficient but often more robust defensive variant,
which always gives canonical samples higher MIS weights than
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non-canonical samples,

𝑚𝑖 (𝑦) =



1
𝑀 + 1

𝑀

∑
𝑗∉𝑅

𝑝 (𝑦)
|𝑅 |𝑝 (𝑦)+(𝑀−|𝑅 |)𝑝←𝑗 (𝑦) , if 𝑖 ∈ 𝑅

𝑀−|𝑅 |
𝑀

𝑝←𝑖 (𝑦)
|𝑅 |𝑝 (𝑦)+(𝑀−|𝑅 |)𝑝←𝑖 (𝑦) , if 𝑖 ∉ 𝑅

. (38)

Resampling weight bounds. With these definitions, we can guar-
antee resampling weights𝑤𝑖 stay bounded (Theorem A.4): If the𝑚𝑖

are given by Equation 36, 37 or 38, and a sample 𝑋𝑖 is reasonably
distributed for integrating 𝑝𝑖 , i.e., 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶𝑖 for some 𝐶𝑖 , then
the resampling weight of 𝑋𝑖 is bounded as

𝑤𝑖 ≤ 𝐶𝑖

|𝑅 | . (39)

The condition that 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 is bounded is equivalent to a bounded
relative error of 𝑊𝑖 from its ideal value 1/𝑝𝑖 (𝑋𝑖 ). Starting from
independent samples, we can guarantee this inductively:

Bounded variance. If we independently sample 𝑋𝑖 with a rea-
sonable importance sampling strategy for target function 𝑝𝑖 (i.e.,
𝑝𝑖 (𝑋𝑖 ) ≤ 𝐶𝑖 𝑝𝑖 (𝑋𝑖 )), then 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 = 𝑝𝑖 (𝑋𝑖 )/𝑝𝑖 (𝑋𝑖 ) ≤ 𝐶𝑖 , and
Equation 39 applies to 𝑋𝑖 .

If all input samples 𝑋𝑖 fulfill 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶𝑖 for constants𝐶𝑖 , then

𝑝 (𝑌 )𝑊𝑌 =
𝑀∑
𝑖=1

𝑤𝑖 ≤
𝑀∑
𝑖=1

𝐶𝑖

|𝑅 | , (40)

and Equation 39 applies to 𝑌 , since 𝑝 (𝑌 )𝑊𝑌 is bounded.
Inductively, chaining GRIS by starting from independent samples

retains a finite worst-case resampling weight sum and a finite worst-
case contribution 𝑓 (𝑌 )𝑊𝑌 , assuming 𝑓 /𝑝 is bounded.

A bounded random variable like 𝑓 (𝑌 )𝑊𝑌 features finite variance.
Further, averaging such variables converges to the expectation. This
important property is not automatically guaranteed by the resam-
pling MIS weights earlier ReSTIR work implicitly used, as𝑚𝑖 = 1/𝑀
often fails to properly partition unity, and additionally may not
account for the singularities in Equation 33.

Constant resampling weights. Constant resampling MIS weights
𝑚𝑖 (𝑦) = 1/𝑀 are very cheap to evaluate. But such MIS weights
only sometimes fulfill the constraints of𝑚𝑖 (Equation 20), i.e., when
any realizable sample 𝑋𝑖 could have been sampled from all other
domains Ω 𝑗 with positive PDF.8 This is generally not true, but an
important exception is when all the input samples are canonical.
This can be achieved e.g., by producing the input samples with
GRIS that uses at least one canonical sample each time, and one
of the resampling MIS schemes above. If constant weights are still
used in the general case, convergence to 𝑝 is lost along with our
convergence and variance results. Bias can still be removed by using
proper contribution MIS, as proposed by Bitterli et al. [2020].

Tractable PDFs. If all input samples have known, tractable PDFs
(e.g., 𝑋𝑖 come from importance samplers with known PDFs 𝑝𝑖 ), the
generalized pairwise and Talbot MIS weights can be modified to
use 𝑝𝑖 instead of 𝑝𝑖 , with instances of 𝑝 replaced with PDF 𝑝𝑐 of a
fixed canonical sample 𝑋𝑐 . The canonical samples must have a PDF
reasonable for integrating 𝑝 . See Section S.1.4 for more information.

8This alone is not generally enough to guarantee finite variance.

5.7 Guaranteeing Convergence ★
So far, we showed GRIS achieves asymptotic convergence of 𝑝𝑌 to 𝑝
simply by requiring Var

[∑𝑀
𝑖=1𝑤𝑖

] −→ 0. In this section we show how
to guarantee convergence in a direct application of generalized RIS
theory. Section 6 extends this analysis to multi-pass algorithms that
guarantee convergence in a streaming manner, requiring only finite
memory and amortizing computation between multiple integrals.

Independent samples. We assume the case of multiple domains
with robust resampling MIS weights (Section 5.6), applying Theo-
rem A.4 to obtain a bound𝑤𝑖 ≤ 𝐶𝑖/|𝑅 | on the resampling weights.
If we also assume that pairs (𝑋𝑖 ,𝑊𝑖 ) are independent, then the𝑤𝑖

are independent, and Var
[∑𝑀

𝑖=1𝑤𝑖
]
=

∑𝑀
𝑖=1 Var [𝑤𝑖 ]. We bound the

variances by Popoviciu’s inequality as

𝑀∑
𝑖=1

Var [𝑤𝑖 ] ≤
𝑀∑
𝑖=1

1
4
𝐶2
𝑖

|𝑅 |2 , (41)

which converges to zero if |𝑅 | grows fast enough compared to𝑀 and
𝐶𝑖 . A practical constraint asserts the importance sampling quality
of additional samples does not grow worse without bound, i.e.,
there exists an upper bound 𝐶 such that 𝐶𝑖 ≤ 𝐶 for all 𝑖 . Then we
get Var

[∑𝑀
𝑖=1𝑤𝑖

] ≤ 𝐶2 𝑀
4 |𝑅 |2 , guaranteeing convergence to zero if

|𝑅 | grows faster than √𝑀 such that |𝑅 | /√𝑀 −→ ∞. For example,
|𝑅 | ≈ 𝑐 𝑀0.5001 for some 𝑐 > 0 converges (slowly) in the limit. But
more practically, we may ensure the ratio of canonical samples,
|𝑅 | /𝑀 , never falls below some constant 𝛾 >0 for large enough 𝑀 ;
this guarantees a worst-case convergence rate of 𝑂 (1/𝑀) in terms
of variance.

Dependent samples. Our GRIS theory does not assume sample
independence; convergence and variance results only assume that
Var

[∑𝑀
𝑖=1𝑤𝑖

] −→ 0 is true. For independent samples, this constraint
is easy to prove. For dependent samples, this constraint may not
be true. An easy counter-example uses duplicate samples 𝑋𝑖 ; no
variance reduction can occur with increased sample count.

We still get convergence if sample correlation is weak enough.
Assume the case of |𝑅 | /𝑀 ≥ 𝛾 and 𝑤𝑖 ≤ 𝐶/|𝑅 | for all 𝑖 (e.g., a
single-domain with𝑚𝑖 = 1/𝑀 ,9★ or multi-domains with our novel
𝑚𝑖 ). While this may not converge generally, we can guarantee con-
vergence by assuming correlations between resampling weights
𝑤𝑖 and 𝑤𝑖+𝑘 tend to zero as 𝑘 −→ ∞. More precisely, we assume
there exists a non-negative sequence 𝑏𝑘 such that regardless of 𝑖 ,
the correlation 𝜌𝑖,𝑖+𝑘 ≤ 𝑏𝑘 , and 𝑏𝑘 −→ 0. Then, we can manipulate

Var
[
𝑀∑
𝑖=1

𝑤𝑖

]
=

𝑀∑
𝑖=1

Var [𝑤𝑖 ] + 2
𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

Cov(𝑤𝑖 ,𝑤𝑖+𝑘 ), (42)

where the first term converges to zero by the argument following
Equation 41, and for the second term we derive in Section S.2

𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

Cov(𝑤𝑖 ,𝑤𝑖+𝑘 ) ≤
𝐶2

4𝛾2

(
1
𝑀

𝑀∑
𝑘=1

𝑏𝑘

)
𝑀→∞−−−−−→ 0, (43)

9★If 𝑝 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶 for a single-domain with constant MIS, then 𝑤𝑖 = 𝑝 (𝑋𝑖 )𝑊𝑖/𝑀 ≤
𝐶/𝑀 = 𝐶/ |𝑅 | if all samples are canonical.
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where 𝛾 is the minimum ratio of |𝑅 | /𝑀 and 𝐶 is an upper bound
for all the 𝐶𝑖 . The mean of 𝑏𝑘 converges to zero since 𝑏𝑘 converges
to zero, and we get convergence with dependent samples.
Section S.2 also contains a generalized result allowing the ratio
|𝑅 | /𝑀 to decrease as𝑀 grows if the maximum correlation 𝑏𝑘 falls
quickly enough to compensate. For example, if

∑∞
𝑘=1 𝑏𝑘 < ∞, we

can guarantee convergence with |𝑅 | ≥ 𝑐 ·𝑀0.5001 for some 𝑐 > 0.

6 AMORTIZATION OVER AN IMAGE WITH RESTIR
Here, we reformulate two ReSTIR variants on top of generalized RIS:
a novel progressive offline renderer and a reformulation of Bitterli
et al. [2020] using GRIS. We also reinterpret ReSTIR as an unbiased
explorative non-Markovian chain and explain when averaging the
images produced with it converges to the ground truth.

In light transport, we aim to produce an image where each pixel’s
color 𝐼𝑖 is determined by integrals

𝐼𝑖 =
∫
Ω
ℎ𝑖 (x̄) 𝑓 (x̄) dx̄, (44)

for pixel index 𝑖 , paths Ω from sensor to a light, image filter ℎ𝑖 , and
path contribution function 𝑓 . A path x̄ generally contributes to few
pixels due to filter ℎ𝑖 .

Common filtering methods sample paths for each pixel and splat
contributions 𝑓 (𝑋 )/𝑝𝑋 (𝑋 ) onto the image with kernel ℎ 𝑗 . This
allows, without loss of generality, integrating pixel 𝑖 only over paths
Ω𝑖 directly contributing to it. This corresponds to using a box filter
for ℎ𝑖 , but generalizing to more complex filters is straightforward.

Integrating 𝐼𝑖 for each pixel only over its domain Ω𝑖 , gives

𝐼𝑖 =
∫
Ω𝑖

𝑓 (x̄) dx̄, (45)

and sharing paths between domainsΩ𝑖 andΩ 𝑗 is impossible without
path modification. We aim to more efficiently share paths between
integrals by incorporating shift mappings into our resampling.

6.1 Formulation
We associate pixels 𝑖 with path space domains Ω𝑖 , integrands 𝑓𝑖
(i.e., 𝑓 restricted10★ to Ω𝑖 ), and target functions 𝑝𝑖 , which could
be e.g., grayscale path contribution functions |𝑓𝑖 | or still cheaper
approximations with bounded relative error.

We assume that each pixel 𝑖 is equipped with a sampler for canon-
ical paths 𝑋𝑖 that are reasonable for integrating 𝑝𝑖 . The samples
could e.g., be directly importance sampled for 𝑝𝑖 , or resampled with
RIS from multiple reasonably importance sampled initial candidates.

6.2 Reservoirs and Weighted GRIS
We slightly extend the discussion on reservoirs in Section 2 to gen-
eralize reservoir merging to multiple input domains. A reservoir
𝑟 stores a path 𝑋𝑟 , its weight𝑊𝑟 , and a sample count 𝑀𝑟 , as per
the traditional use of reservoirs for sampling 𝑋𝑟 from a stream of
inputs. In that context,𝑀𝑟 is the number of samples the current 𝑋𝑟
is resampled from, as 𝑋𝑟 is randomly retained or replaced with the
right probability at the encounter of each new input sample, and𝑀𝑟

is increased by one. A reservoir merge of reservoirs 𝑟1 and 𝑟2 builds
a new reservoir 𝑟𝑚 , with 𝑋𝑟𝑚 resampled from 𝑋𝑟1 and 𝑋𝑟2 as if it
10★Domain restriction: D(𝑓𝑖 ) = Ω𝑖 ⊂ Ω and 𝑓𝑖 (𝑥) = 𝑓 (𝑥) in Ω𝑖 .

were resampled from the concatenation of the input samples of 𝑟1
and 𝑟2, and𝑀𝑟𝑚 is simply𝑀𝑟1 +𝑀𝑟2 .

The interpretation of𝑀𝑟 as a sample count is too strict for ReSTIR:
a reservoir merge simply resamples 𝑋𝑟𝑚 with RIS from canoni-
cal samples 𝑋𝑟1 and 𝑋𝑟2 , with resampling MIS weights 𝑚𝑟𝑖 (𝑦) =
𝑀𝑟𝑖 /(𝑀𝑟1 +𝑀𝑟2 ). The meaning of 𝑀𝑟 in this context is relative
weight for the corresponding sample. Since we use the 𝑋𝑟 for esti-
mating an integral and the𝑀𝑟 define the relative weights of these
samples, we refer to the 𝑀𝑟 as confidence weights. In fact, ReSTIR
even caps 𝑀𝑟 to a constant𝑀𝑐 , limiting confidence on old samples,
invalidating the old interpretation as a sample count.

Reservoir merging generalizes to weighted GRIS, with proper MIS
weights (Section 5.6), simply by multiplying the 𝑝 and 𝑝← in the MIS
formulas by the corresponding reservoir’s𝑀𝑟 ; the resampling result
is stored in𝑋𝑟𝑚 , and𝑀𝑟𝑚 =min(𝑀𝑐 ,

∑
𝑗 𝑀𝑟 𝑗 ). This generalized form

of reservoir merging is used in the next section.

6.3 ReSTIR as Chained GRIS
We rewrite the key aspects of the ReSTIR algorithm, i.e., Bitterli
et al. [2020, Algorithm 5], as a sequence of GRIS resampling steps;
we will refer to the stages of this algorithm later:

Let𝑌 𝑡−1
𝑖 be a resampled (or sampled) path for pixel 𝑖 on frame 𝑡−1,

stored for later reuse along with its unbiased contribution weight
𝑊𝑌 𝑡−1

𝑖
. For each frame 𝑡 , in ReSTIR, we

(1) (Initial candidates) Generate an independent sample 𝑋 𝑡
𝑖 for

each pixel 𝑖 and evaluate its contribution weight𝑊𝑋 𝑡
𝑖
.

(2) (Temporal reuse) Use GRIS to select 𝑍𝑖 by resampling between
last frame’s sample𝑌 𝑡−1

𝑖 and new sample𝑋 𝑡
𝑖 . Pixel correspon-

dences may be identified via motion vectors.
(3) (Spatial reuse) Each pixel selects numerous random spatial

neighbors 𝑗 , and selects 𝑌 𝑡
𝑖 by resampling between 𝑍𝑖 and

neighbor samples 𝑍 𝑗 via GRIS. This step may be executed
multiple times with the assignment 𝑍𝑖 := 𝑌 𝑡

𝑖 .
(4) Estimate the pixel integral, 𝐼𝑡𝑖 ≈ 𝑓𝑖 (𝑌 𝑡

𝑖 )𝑊𝑌 𝑡
𝑖
.

ReSTIR typically stores a reservoir for each pixel 𝑖 . The new sam-
ples 𝑋 𝑡

𝑖 are treated as reservoirs with𝑀𝑟 =1, and are merged with
the reservoir storing 𝑌 𝑡−1

𝑖 , accounting for the confidence weights.
Spatial resampling works akin to a stochastic convolution, merg-
ing in reservoirs from random nearby pixels. The last sample 𝑌 𝑡

𝑖 is
stored in that pixel’s reservoir, and its confidence weight from the
spatial reuse passes is used in the next frame’s temporal resampling
step.
Appendix B discusses additional details related to performance

and correctness.

6.4 Path Space Exploration via M-capping
Capping𝑀𝑟 to constant𝑀𝑐 (Section 6.2) is critical. Without limiting
𝑀𝑟 , the relative weights of new samples exponentially approach
zero, causing convergence to the wrong result as in Figure 2.
With 𝑀-capping, the relative weight of the temporally reused

sample is approximately limited to at most 𝑀𝑐/(𝑀𝑐 + 1), which
should intuitively fulfill the convergence constraints in Section 5.7.

ACM Trans. Graph., Vol. 41, No. 4, Article 75. Publication date: July 2022.



75:12 • Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and Chris Wyman

11 The abovementioned constraint is a requirement for input sam-
ples; even if the constraint is fulfilled, the ReSTIR result itself still
will not converge since the number of spatial input samples is not
increased (𝑀 ̸−→ ∞). Instead, ReSTIR will explore the path space
in such a way that its average over frames will now converge in a
still scene: Assume that we hypothetically resample, with 𝑝 = 𝑓𝑖 ,
for pixel 𝑖 a path from one of past frames, i.e., 𝑌 = 𝑌 𝑠

𝑖 where 𝑠 is
random. Its PDF now approaches 𝑓𝑖/∥ 𝑓𝑖 ∥, the variance of its contri-
bution converges to zero, and the said contribution is the mean of

the ReSTIR frames, 𝑓𝑖 (𝑌 )𝑊𝑌 =
�
��𝑓𝑖 (𝑌 )

𝑝 (𝑌 )
∑𝑇
𝑡=1

1
𝑇 · 𝑓𝑖 (𝑌 𝑡

𝑖 )𝑊𝑌 𝑡
𝑖
.

This gives us an intriguing interpretation of ReSTIR: with state
defined as one path 𝑋𝑖 for each pixel, ReSTIR produces an unbiased,
explorative non-Markovian chain whose PDF approximates 𝑓 better
with more input samples. Averaging images of this chain converges
in a still scene. In real-time, we display single states of the unbiased
chain, updated in time by sampling, shifting and resampling paths.

6.5 ReSTIR for Offline Rendering
Temporal path reuse reduces current frame variance but correlates
samples temporally. This slows convergence if temporally accumu-
lating in a progressive renderer (Figure 9b). Instead, we propose
rendering independent frames with spatial-only GRIS. This speeds
convergence and should allow easier integration to existing systems.
This offline algorithm is a simple two-pass method. In a single

iteration, the first pass performs one or more rounds of cross-pixel
reuse with GRIS to resample canonical samples from other pixels.
The second pass simply averages the produced images.

Proving convergence of the mean is now easy, despite the corre-
lations in the spatial reuse passes: GRIS with proper MIS weights
remains unbiased despite the correlations, and by Equation 40, the
contributions of GRIS with a fixed number of spatial reuse passes
remain bounded. Hence, averaging independently sampled frames
converges.
Strictly speaking, the above convergence is true only for scalar

functions 𝑓𝑖 . In practice, 𝑓𝑖 is vector-valued, and we use e.g., a
grayscale 𝑝𝑖 = |𝑓𝑖 |, which guarantees convergence of a path 𝑌 = 𝑌 𝑠

𝑖
sampled from a random frame 𝑠 to the brightness |𝑓𝑖 |. Literally
evaluating the unbiased contribution yields,

𝑓𝑖 (𝑌 )𝑊𝑌 =
𝑓𝑖 (𝑌 )
|𝑓𝑖 (𝑌 ) | ·

𝑇∑
𝑡=1

1
𝑇

��𝑓𝑖 (𝑌 𝑡
𝑖 )

��𝑊𝑌 𝑡
𝑖
, (46)

which may include color noise. However, in the offline context
we assume budget for multiple samples, and thus recommend the
explicit mean formula

𝐼𝑖 =
1
𝑇

𝑇∑
𝑡=1

𝑓𝑖 (𝑌 𝑡
𝑖 )𝑊𝑌 𝑡

𝑖
(47)

as it removes color noise.
The convergence of 𝑌 = 𝑌 𝑠

𝑖 in brightness opens potentially inter-
esting future work: a random subset of the 𝑌 𝑡

𝑖 could be resampled

11This would lead to 𝑏𝑘 = (𝑀𝑐/(𝑀𝑐 + 1))𝑘 with 𝑏𝑘 −→ 0, but an exact mathematical
proof is hard due to correlations and complicated MIS weights.

and stored for each pixel to e.g., bootstrap the rendering of the next
animation frame, or for re-rendering after material changes.

7 DESIGNING SHIFT MAPPINGS
Previous light transport techniques that manipulate and reuse paths
(e.g., gradient-domain rendering) introduce various shift mappings
to map paths between pixels. Generally, no single shift map is opti-
mal and the best one depends on both scene properties as well as
their computational efficiency on different hardware. In this section,
we describe key properties of effective shift maps and introduce
common building blocks for practical shift mappings.

We also describe a novel design principle for effective GPU-based
shift mappings, how to choose the shifting strategy based on the
sampled BSDF lobe, and new heuristics for avoiding noise.

7.1 Shift Mapping
A shift map𝑇 takes a path x̄ from pixel 𝑘 and maps it to another path
ȳ = 𝑇 (x̄) in pixel 𝑗 . We call the original path x̄ the base path, and the
shifted ȳ the offset path. Using Veach’s [1998] vertex parametrization,
we define a generic shift map 𝑇 from Ω𝑘 to Ω 𝑗 as

𝑇 ( [x0, x1, x2, x3, ...]) = [y0, y1, y2, y3, ...] . (48)

Vertex y0 is normally specified on the sensor and y1 comes from
tracing through pixel 𝑗 , accounting for depth-of-field parameters.
When designing shift maps, the main freedom (and challenge)

is designing a heuristic for vertices y2 and beyond so the shift
approximately retains the path contribution, 𝑓𝑘 (𝑇𝑘 (x̄)) ≈ 𝑓𝑗 (x̄) and
|𝜕𝑇𝑘/𝜕x̄| ≈ 1. Maximizing similarity of path contributions roughly
equates to reusing (nearly) the same paths for nearby pixels, a
common design heuristic. Figure 5 shows a hybrid shift mapping of
random replay and reconnection as an example.

Local decisions. A common strategy to find offset paths ȳ builds
them sequentially, vertex-by-vertex, starting from y1 and analyzing
local base and offset path geometry. For each 𝑖 , the next offset vertex
y𝑖+1 is decided based on base path vertices x𝑖−1, x𝑖 , and x𝑖+1 plus
offset path vertices y𝑖−1 and y𝑖 . For example, if vertices x𝑖 , x𝑖+1 and
y𝑖 have rough materials, a common strategy connects the base and
offset paths by choosing y𝑖+1=x𝑖+1. Previous vertices x𝑖−1 and y𝑖−1
can also be used to perform half-vector copy [Kettunen et al. 2015].

Ensuring bijectivity. Sequential construction of offset paths some-
times halts abruptly: e.g., in half-vector copy, local decisions can
map a refraction into total internal reflection, but the reverse never
happens, breaking bijectivity. Bijectivity is not always achievable
throughout the path space, but that poses no big problem: not all
paths need belong to the shift mapping domain. The shift may, after
trying to shift a path, simply return “undefined.” This marks the
path as not belonging in the shift’s domain.

Any successful shift must be invertible: if x̄ shifts to ȳ, an inverse
shift must exist to map ȳ back to x̄. Often slightly more is guaranteed
by designing symmetric shift mappings where if 𝑇𝑘→𝑗 (x̄) = ȳ, then
𝑇𝑗→𝑘 (ȳ) = x̄. Removing paths from a map’s domain may cause
noise and waste computation, but neglecting bijectivity introduces
significant bias.
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Fig. 5. A hybrid shift mapping. The base path selects x4 for recon-
nection, since both x3 and x4 are rough. The offset path copies the
random numbers of the base at x1 and x2 to construct similar scatter
directions for y1 and y2 and reconnects y3 to x4. This is the earliest
reconnection giving two consecutive rough/diffuse vertices. Without
connectability conditions the offset path would connect y1 to x2 (a
glossy vertex), potentially giving a path of near-zero contribution as
y1↔x2↔x3 is far from an ideal reflection.

7.2 Common Building Blocks
Local decisions for building offset paths often stem from fixing
some property of the base path; such invariants share information
between the paths, making shift inversion possible. Here we briefly
review some common strategies for shift mapping:

Vertex copy (reconnection). Reconnecting offset and base paths as
soon as possible is common, as vertex sharing is cheap and often
keeps path contributions similar. If x𝑖 , x𝑖+1, and y𝑖 all lie on rough
materials, Lehtinen et al. [2013] reconnect the offset path to the base
path by setting y𝑖+1 = x𝑖+1. Subsequent vertices of x̄ are normally
copied too. This strategy is good for diffuse and rough materials.

Half-vector copy. Reconnection breaks path similarity for near-
specular vertices. Kettunen et al. [2015] transform the base path’s
half-vector into local tangent space, copy it to the offset path, and
re-trace the vertex y𝑖+1 in the reflection (or refraction) direction.

Direction copy. Direction copy takes the exitant direction from a
base path vertex and copies it to the offset path, in global coordinates,
and re-traces to find the next vertex y𝑖+1. Direction copy is often
used with environment mapping.

Random replay. Random replay copies the base path’s random
numbers to re-trace y𝑖+1 with the method used by the base path.
Random replay often makes decisions roughly similar to copying
the half-vector or direction, or reconnecting to an area light in the
case of next-event-estimation.

Manifold exploration. If reconnection is impossible due to spec-
ularities, Lehtinen et al. [2013] find the next connectable vertex,
copy it, and apply manifold exploration [Jakob and Marschner 2012]
for intermediate (near-)specular vertices. This strategy iteratively
constructs high-quality offset paths, albeit at relatively high cost.

While reconnecting quickly is often a good strategy, there are
pitfalls. Some challenges for path shifts include: not closely approx-
imating ideal reflections on high-gloss surfaces, trying to reconnect
through occlusions, drastically changing the reconnection segment

length, shifting between different objects or materials, or simply
diverging too far (e.g., due to reflection or refraction).

7.3 A Full Shift Mapping
Full shift mappings combine these building blocks, often based on
simple heuristics. For example, Kettunen et al. [2015] sequentially
analyze base and offset paths to find suitable reconnections using
a simple condition: vertices x𝑖 , x𝑖+1, and y𝑖 must all be considered
“sufficiently” rough. If this test passes, the base and offset paths
are reconnected, otherwise a half-vector copy is used and the test
is repeated for the next vertex. Hua et al. [2019] show equivalent
results by replacing the half-vector copy by random replay. We
found Hua et al.’s approach more efficient on the GPU and slightly
more general, so we adopt it with several improvements.

7.4 Shift Mappings Optimized for Real-Time Rendering
We study two different shift mappings, and modify them as needed
to make them suitable for a GPU implementation that can target
real-time rendering:
• The reconnection shift [Lehtinen et al. 2013] sets y2=x2 to
always connect at the first indirect vertex. This works well for
mostly diffuse scenes. ReSTIR GI [Ouyang et al. 2021] implic-
itly uses this choice but trades correctness for performance.
• A hybrid of random replay and reconnection [Hua et al. 2019]
that postpones the reconnection by using random replay if
certain connectability conditions are not fulfilled. We present
an improved variant of this shift mapping.

The reconnection shift is easy to implement efficiently: it only
requires storing the reconnection vertex and re-evaluating the path
contribution. Implementing the hybrid shift efficiently is non-trivial:
random replay is not efficient without reconnections, but due to
potential reconnection postponing, all base path vertices need to be
stored as candidates for reconnection. This is not ideal since GPU
ray tracing is often memory-bound.

We minimize memory use by letting the base path select a single
potential reconnection vertex; we precompute the first base path
vertex x𝑖 that satisfies the connectability condition for x𝑖 and x𝑖+1.
Reconnection must happen at this vertex, or it does not happen.
This only requires storing vertex x𝑖+1 instead of the full path.

This constraint is reasonable. For useful path reuse, the base and
offset paths should be relatively similar; if similar enough, they
should also agree on the reconnection index. Further, our bijectivity
requirement forces this guarantee: when building y, if we find it
disagrees on the earliest possible reconnection vertex, the shift must
return “undefined” as it would not be invertible.

7.5 Connectability Conditions
We propose two novel improvements for the connectability condi-
tions compared to previous work, and we find these to often result
in a significant noise and artifact reduction with our method.

Distance condition. Area formulations of the rendering equation
include geometry terms that become singular for short path seg-
ments, e.g., in corners. In unidirectional path tracing, this singularity
stems from next-event-estimation but is eliminated by standard MIS.
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Similar singularities appear when reconnecting nearby vertices,
causing increased noise near geometry edges.

We propose reducing this problem by skipping reconnections that
introduce short segments. This is similar to Manzi et al.’s [2014]
distances test, but instead of spawning amanifold walk, we postpone
reconnection by performing random replay. More concretely, we
only allow reconnection to x𝑖+1 if ∥x𝑖+1−x𝑖 ∥ ≥ 𝑑max. By symmetry,
the offset path must fulfill ∥x𝑖+1−y𝑖 ∥ ≥ 𝑑max for y𝑖+1 to become
x𝑖+1, as described in Section 7.4.

Lobe-specific connectability. Kettunen et al. [2015] test reconnec-
tion feasibility by ensuring roughness values of x𝑖 , x𝑖+1, and y𝑖
all exceed a given threshold. But since BSDFs often sum multiple
separate lobes, such tests are ambiguous, e.g., on a material with
a bottom diffuse layer and a top clear coat. Choosing good shift
maps for such materials is a long-standing problem [Kettunen 2020]:
how to classify roughness of composite materials with just one
parameter? Any single strategy likely mistreats at least one layer.
Unidirectional path tracers often optimize sampling by decom-

posing and evaluating only one BSDFs lobe per vertex [Szésci et al.
2003]. We propose the same for shift mappings: we examine the
roughness of just the selected lobe, and otherwise proceed as de-
scribed in Section 7.4. We detail the path extension with lobe indices
that is required for lobe-specific connectability in Section 7.6.

7.6 Extending Paths with Lobe Indices
For a path tracer generating 𝑁 paths by different techniques for
each path length 𝑑 , the standard path integral can be written

𝐼 =
∞∑
𝑑=1

𝑁∑
𝑛=1

∫
Ω𝑑

𝜔𝑛 (x̄) 𝑓 (x̄) dx̄ , (49)

where 𝜔𝑛 is the MIS weight for path strategy 𝑛. For simplicity, if we
assume 𝑁 = 2, then 𝑛 = 1 uses next-event estimation to sample the
last vertex and 𝑛 = 2 uses BSDF sampling. Balance heuristic MIS
weights give 𝜔𝑛 (x̄) = 𝑝𝑛 (x̄)

𝑝1 (x̄)+𝑝2 (x̄) , where 𝑝1 and 𝑝2 are the NEE and
BSDF sampling PDFs of the path, and sum over all BSDF lobes.
Our improved shift strategies from Section 7.4 require splitting

BSDFs into lobes. We transform Equation 49 to use a lobe-extended
path space, allowing us to implement ReSTIR by simple substitution,
without any need for heuristic argumentation.

We combine paths x̄ = (x0, . . . , x𝑑 ) with sequences of lobe indices
ℓ̄ = (ℓ1, . . . , ℓ𝑑−1) into an extended path space of length-𝑑 paths Ω̃𝑑
represented by pairs (x̄, ℓ̄). Each ℓ𝑗 is a positive integer 1≤ ℓ𝑗 ≤𝑁lobe
(the BRDF model’s lobe count) or special symbol ℓ𝑑−1 =𝒩 if our
path ends with next-event estimation.

With 𝑓 denoting the usual path contribution function, we define
a partial contribution function 𝑓ℓ̄ as follows: for fully BSDF-sampled
paths, it evaluates only lobe ℓ𝑗 at each vertex x𝑗 . If the last vertex
x𝑑 is NEE-sampled, i.e., ℓ𝑑−1 = 𝒩, the BSDF at x𝑑−1 is evaluated
with all lobes.

Denoting the set of lobe index sequences by 𝐿𝑑 , we can rewrite
Equation 49 as

𝐼 =
∞∑
𝑑=1

∑
ℓ̄∈𝐿𝑑

∫
Ω𝑑

𝜔𝑛 (ℓ̄) (x̄) 𝑓ℓ̄ (x̄) dx̄, (50)

for 𝑛(ℓ̄) ∈ {1, 2} based on whether the last vertex is NEE- or BSDF-
sampled. Finally, we combine the sums into an integral similar to
Veach [1998], which integrates over our extended path space x̃∈ Ω̃
for pairs x̃ = (x̄, ℓ̄) of all lengths 𝑑 :

𝐼 =
∫
Ω̃
𝜔𝑛 (ℓ̄) (x̄) 𝑓ℓ̄ (x̄) dx̃. (51)

This formulation allows use of shift mappings that reason about the
BSDF lobes, which is not possible in vertex-based path spaces.

To shift a path, we test if vertex x𝑗 is sufficiently rough by exam-
ining the roughness of the lobe ℓ𝑗 chosen to sample vertex x𝑗+1. We
treat NEE-sampled vertices as rough if at least one of their BRDF
lobes is sufficiently rough. All light vertices are treated as rough. If
all three reconnection vertices (x𝑗 , x𝑗+1 and y𝑗 ) pass the roughness
and distance conditions (Section 7.5), we execute the reconnection;
otherwise we sample y𝑗+1 via random replay.

When using random replay, base and offset paths typically select
the same BRDF lobes, as reusing random numbers over nearby paths
gives similar per-vertex choices. A reconnection shift copies the lobe
index from the base path vertex. In both cases, path contribution
is likely preserved. Separating BRDF lobes frequently increases
efficiency of our hybrid shift significantly (see Figure 12).

8 IMPLEMENTATION
We apply our GRIS theory in a proof-of-concept path tracing al-
gorithm we call ReSTIR path tracing (ReSTIR PT). We build on
the Falcor GPU rendering framework [Kallweit et al. 2021], and
implement ReSTIR PT as chained GRIS passes, per Section 6.3.
ReSTIR PT can use any shift map to reuse paths between pix-

els, but we implement the two from the previous section: a hybrid
shift combining random replay and reconnection with our lobe-
specific improvements, and a simpler reconnection shift that always
reconnects to the first indirect vertex.
Like many path tracers, ours only evaluates the sampled BSDF

lobe for BSDF-sampled vertices and evaluates all lobes for NEE-
sampled vertices. We treat lobe selections as additional path param-
eters, as described in Section 7.6, using the sampled lobe roughness
to choose between reconnection and random replay.
Our ReSTIR PT implementation handles full surface-to-surface

light transport. Volumetric media requires a volumetric shift map;
Lin et al. [2021] implicitly defines one possibility and Gruson et al.
[2018] propose another, though finding fast volumetric shifts for
resampling remains interesting future work.

We have two prototypes, targeting unbiased real-time and offline
light transport, though neither is performance optimized. This con-
trasts with Ouyang et al. [2021], a biased12 but optimized precursor.
Building on our generalized theory, ReSTIR PT is an unbiased global
illumination method that better handles specular light transport,
thanks to supporting arbitrary shift maps.
While we expect benefits to direct illumination from our GRIS

theory, our implementations primarily address indirect light. We
use ReSTIR DI [Bitterli et al. 2020] for direct lighting.

Below, we discuss our design choices and implementation details.

12Ouyang et al. [2021] explain some key sources of bias such as assuming Lambertian
scattering at reconnection vertices; following our GRIS theory removes all bias.
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8.1 Jacobian Determinants
Wefirst give Jacobian determinants for the reconnection and random
replay shifts. We assume base and offset paths up to vertex 𝑖 are
fixed; probability densities below are to be understood as conditional
to earlier path state.
We denote by 𝜔𝑥

𝑖 the unit vector from x𝑖 to x𝑖+1, and the corre-
sponding random numbers leading from vertex x𝑖 to x𝑖+1 by ū𝑥𝑖 .
The offset path features similar notation with 𝑦.

Solid angle. When using the common solid angle parametrization,
the Jacobian for the reconnection shift is (e.g., Kettunen et al. [2015])�����
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for 𝜃•2 the angle between 𝜔•𝑖 and the geometric surface normal at
x𝑖+1 = y𝑖+1. The Jacobian for deciding 𝑦𝑖+1 by random replay is�����
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i.e., the ratio of the solid angle sampling probabilities of the next
vertices, given the paths up to vertex 𝑖 .

As we use local shift decisions, the Jacobian of the full path shift
is the product of Jacobians from each vertex.

Primary-sample space (PSS). Path tracers build paths x̄ based on
random number sequences ū = (𝑢1, 𝑢2, . . .), defining a primary-
sample space 𝒰. In practice, integrals of form

∫
Ω 𝑓 (x̄) dx̄ are evalu-

ated
∫
𝒰

𝑓 (𝑥 (ū))
𝑝𝑋 (𝑥 (ū)) dū, where 𝑥 builds paths using random numbers.

Our prototypes use primary-sample space for easier implementa-
tion. Results are identical, but interpretations change: the integrand
is 𝑓 (𝑥 (ū))/𝑝𝑋 (𝑥 (ū)) over domain 𝒰 and the PDF of the primary
samples is 𝑝𝑈 = 1. Section S.3 briefly introduces the PSS formulation
of the path integral.
The Jacobian for random replay in the PSS parametrization is

always 1, and solid-angle Jacobians can be converted into primary-
sample space by dividing by the right-hand-side of Equation 53. Due
to the vertex-by-vertex construction of the paths, we have�����
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Mixing PSS and path space shifts ★. Mixing random replay with
path space shifts poses a conceptual challenge. Path samplers often
consume more random numbers than the path dimensionality; this
dimensionality mismatch means Jacobians between path space and
primary-sample space do not exist. Bitterli et al. [2017] bijectively
map between paths and their random numbers by padding paths
with extra, unused dimensions. Assuming this theoretical bijection
exists often allows mixing path space shifts and random replay.

8.2 Reservoir Storage
Our reservoirs (Section 6.3) consume 88 bytes per path while sup-
porting our hybrid shift. Beyond storing contribution weights𝑊𝑟

and confidence weights𝑀𝑟 (Section 6), we store information needed
for our shift map: the path’s chosen reconnection vertex and a seed
for random replay. See Section S.4 for details.

8.3 Parameters
In the following, we refer to steps of the ReSTIR algorithm as de-
scribed in Section 6.3.

Offline. For offline rendering, we sample 32 initial path trees for
each pixel via path tracing, and resample one path with RIS (as in
Lin et al. [2021]). The selected path gets reused over three iterations
of spatial reuse. All reuse passes resample from the current pixel and
six neighbors selected from a 10-pixel radius via a low-discrepancy
sequence. We found this a near-optimal configuration for offline
rendering. Section S.6 contains a parameter ablation.

Real-time. For real-time rendering, we resample the path from
only one path tree sampled with path tracing. A single spatial reuse
pass selects three random neighbors in a 20-pixel radius; this keeps
spatial reuse costs low and relies more on temporal reuse to im-
prove distributions. We cap 𝑀 with 𝑀𝑐 = 20, i.e., the prior frame
confidence is at most 20× that of new samples.

Connectability thresholds. Good values for distance and roughness
thresholds are important, but relatively consistent. A per-lobe GGX-
roughness threshold of 0.2 generally works well; scene scale affects
the distance threshold, we used 1% - 5% scene size in different test
scenes. The camera distance to the region of interest and material
glossiness affects the optimal parameter. We leave automatically
setting ideal parameters to future work.

Resampling MIS. We use the defensive variant of pairwise MIS
(Equation 38) for spatial reuse. The real-time variant additionally
uses generalized Talbot MIS (Equation 36) for temporal reuse. For
both, |𝑅 | = 1, and convergence is realized in the offline case by
rendering multiple independent frames.

9 RESULTS AND DISCUSSION
Below we first validate that convergence of ReSTIR PT matches our
guarantees from Section 5. In Section 9.2 we quantify the quality of
our shift maps from Section 7, and in Section 9.3, compare ReSTIR
PT to recent global illumination algorithms. We present results
separately for our real-time and offline variants. All performance
numbers were measured on a GeForce RTX 3090 at 1920×1080.

(a) Default Cornell Box (b)With glossy boxes

ReconnectionReconnection

HybridHybrid

(c) Two shifts

Fig. 6. A 3-bounce reference for two variants of the Cornell Box. (a)
Default version, roughness 0.5. (b) Two glossy boxes with roughness
0.15. (c) A quality comparison of 1 spp ReSTIR PT with reconnection
shift (5 ms) and hybrid shift (12 ms) in the glossy variant.
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Fig. 7. Single-sample integration error with GRIS, with increasing
input samples from each pixel within a 7×7 reuse window. Asymp-
totic zero-variance integration is realized with generalized Talbot and
pairwise MIS weights but not with constant MIS weights (red).

9.1 Convergence Results
We study convergence in the Cornell Box scene, with modified
materials mixing Lambertian and GGX microfacet BSDFs [Walter
et al. 2007] with roughness 0.5 (Figure 6a).

We evaluate convergence behavior for three-bounce indirect illu-
mination, and use the reconnection shift for simplicity. We compute
error in grayscale images to map the convergence results to GRIS.

Asymptotic convergence with fixed reuse window. Sections 5.6 and
5.7 give robust Talbot and pairwise resampling MIS weights that
asymptotically realize single-sample zero-variance integration, un-
der certain correlation and importance sampling criteria. In Figure 7,
we fix the ratio |𝑅 |/𝑀 as we increase the independent input sample
count over a fixed window of spatial-only reuse.
Both our generalized pairwise and Talbot MIS weights realize

a linear curve showing asymptotic zero-variance integration, but
constant MIS weights do not. While Talbot weights have lower per-
sample error, the lower algorithmic complexity of pairwise MIS can
achieve similar variance 6-7× cheaper.

Non-convergence with increasing reuse window. We only guarantee
convergence if |𝑅 | > 𝑂 (√𝑀). One case that breaks this criterion
reuses samples from each pixel over an increasing window, i.e.,
|𝑅 | = 1 but𝑀 grows. This may not converge if part of path space is
only covered by the canonical (central) sample. Adding more non-
canonical samples decreases the chance to select the central one, so
poorly-covered areas slowly become sampled worse. Figure 8 shows
reuse over larger windows initially lowers variance, but variance
increases beyond some point.

Temporal history and M-cap. In Section 6.3 we discuss capping the
temporal confidence weight𝑀𝑟 in ReSTIR reservoirs. As the cap𝑀𝑐

increases, 𝑏𝑘 approaches 1 in Section 5.7. Using𝑀𝑐 =∞ corresponds
to 𝑏𝑘 = 1, where we lose all guarantees. Figure 2 shows a simple
example of this failure, converging to a static and wrong result.

In Figure 9a we show ReSTIR PT’s integration error with temporal
reuse and increasing frame counts. Colors correspond to different
𝑀-cap values; the scene is static to avoid errors from animation.
Pixels compute a new independent sample on each iteration,

which is resampled with the temporal result from the prior frame.

100 101 102 103

Neighbor Count
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10 2
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Fig. 8. Breaking |𝑅 |>𝑂 (√𝑀) loses convergence guarantees. Here, we
reuse from a central (canonical) sample (|𝑅 | = 1) and an increasing
window of𝑀 pixels around it. Even with proper MIS weights, without
new canonical samples faraway pixels are increasingly worse matches.
Eventually, this offsets any benefit from reusing more paths.
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(a) Effect of𝑀-cap
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(b) Real-time (M=20) vs. offline

Fig. 9. (a) Error of ReSTIR PT with temporal reuse, with increasing
frame counts and different𝑀-cap values. A large𝑀-cap eventually
increases noise, while low values do not minimize error. Good𝑀-caps
(green) give consistently low errors. (b) Our offline method (blue) turns
off temporal reuse, which converges faster when averaging frames; it
avoids the frame-to-frame correlation introduced by temporal reuse.

(a) M-cap:𝑀𝑐 = 20 (b) No M cap

Fig. 10. Image of Figure 9a after 104 iterations, with and without
M-cap. Like Figure 2, (b) shows convergence to a wrong result due to
temporal correlations.

The old sample’s relative weight is𝑀𝑟 /(𝑀𝑟 +1), which drastically
favors this sample. This is akin to an exponential moving average.
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(a) Default Cornell Box
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(b)With glossy boxes

Fig. 11. Error comparison of our ReSTIR PT with the reconnection
shift (blue) and the hybrid shift (green). Both shift mappings are good
for rough scenes (left), but the hybrid shift (green) is more suited for
scenes with glossy surfaces (right).

Reusing prior frame samples initially improves Monte Carlo vari-
ance. But until𝑀𝑟 reaches the cap, the relative weight of new sam-
ples diminishes, increasing frame-to-frame correlation. This is anal-
ogous to sample impoverishment common in SIR: fewer and fewer
unique samples remain, unless this correlation buildup is halted.
Eventually, increased correlation overshadows the benefits of

reuse (red, orange) leading to higher variance until𝑀-cap is reached.
Capping 𝑀 to maximize the benefits of temporal reuse (green) is
key to real-time rendering with ReSTIR. Figure 10 shows the visual
impact of capping M.

In Figure 9b we show the convergence behavior when averaging
consecutive frames of our real-time ReSTIR PT with a finite𝑀-cap
(purple). We empirically find convergence, as the𝑀-cap decorrelates
temporally distant frames, i.e., it forgets temporal correlations.

Offline rendering. The goal of offline rendering is slightly different:
instead of maximizing the individual quality of each frame, we want
to produce the best image over a longer rendering time. We find
that for this purpose, the correlations from temporal reuse hurt
more than they help, and we propose turning off temporal reuse for
offline rendering. The additional rendering time allows us to use
slightly different rendering parameters (Section 8.3), and due to both
improvements, the resulting algorithm often converges significantly
faster (Figure 9b, blue).

9.2 Shift Mapping Results
We study ReSTIR PT with the reconnection and hybrid shifts in the
Cornell Box scene. We analyze the results in the rough variant (GGX
roughness 0.5, Figure 6a), and variant with glossy boxes (roughness
0.15, Figure 6b).

Reconnection is good for rough. We plot convergence in Figure 11
with a path tracing baseline. As known from gradient-domain ren-
dering (e.g. Kettunen et al. [2015]), the reconnection shift is efficient
for rough surfaces (Figure 11a, green) allowing cheap path reuse
from indirect light. Because the reconnection shift (green) always
reconnects after a primary hit, regardless of BSDF, it less efficiently
reuses paths involving glossy interactions (Figure 11b, green).

(a) All Lobes
MAPE: 0.316
Time: 51.7 ms

(b) Random Lobe
MAPE: 0.297
Time: 38.7 ms

(c) All Lobes
Avg. path length
pre-connection: 2.3

(d) Random Lobe
Avg. path length
pre-connection: 1.3

Fig. 12. Evaluating just one random BSDF lobe enables lobe-specific
shift maps providing more efficient reuse, less noise, and shorter render
time. The heatmaps show lobe-specific shifts decrease the average path
length on multi-lobe materials. See full image in Figure 15.

Hybrid is more robust. Random replay better handles glossy sur-
faces; our hybrid shift inherits this property (Figure 11b, red) while
also remaining effective on rough surfaces (Figure 11a, red).

Visual comparison. Figure 6 shows shift map behavior on varied
material types. For the glossy Cornell Box we render one path per
pixel with ReSTIR PT (Figure 6c) with spatiotemporal reuse. On
rough surfaces our hybrid shift (Figure 6c, bottom) behaves similar
to a reconnection shift (Figure 6c, top), but our hybrid’s distance
criteria helps decrease noise at box edges.

Our hybrid shift postpones reconnections on glossy materials by
inserting a random replay. This often improves later reconnections,
reducing noise on glossy surfaces (Figure 6c, side of glossy box).
The lower reconnection shift quality is somewhat offset by its

lower cost; equal-time comparisons allow averaging multiple inde-
pendent iterations of the algorithm (e.g., as in Figure 15).

Separate handling of lobes. Many renderers only evaluate one
random lobe per BSDF evaluation. Varying the selected shift map
per lobe significantly reduces noise and improves performance (see
Figure 12). Reconnecting works well for rough BSDFs, and random
replay is effective on glossy BSDFs. Neither shift is ideal for multi-
lobe materials, but shifting lobes separately fixes the issue.

Caustics. Caustics paths (i.e., {LS+DE} per Heckbert [1990]) are
important in highly specular scenes. Interestingly, we find our two
shift maps work well for different types of caustics with ReSTIR PT.

Our hybrid shift effectively reuses paths for contact caustics, i.e.,
light concentrating on a nearby surface (see Figure 13, top). When
tracing an offset path through the bunny, random replay produces
paths similar to the base path; if this path hits the same light source,
random replay gets good path reuse. Reconnection shifts, however,
often fail to reconnect on near-delta BRDFs.
Caustics from distant highlights, e.g., the lamp reflection in Fig-

ure 13, bottom, perform poorly with the hybrid shift. Offset paths
generated by random replay easily diverge enough to miss the small
highlight, increasing noise. Conversely, reconnection only changes
the incident direction slightly when reconnecting to the distant win-
dow, minimizing path divergence and increasing path contributions.
We expect a manifold exploration shift [Lehtinen et al. 2013]

would improve both cases; while expensive if applying to all paths,
ReSTIR PT works with single path resampled from the path tree,
making such a shift feasible. This is interesting future work.
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Fig. 13. (Top) Equal time (25 ms) comparison of path tracing and
ReSTIR PT with different shifts for our glass bunny. (Bottom) For San
Miguel (60 ms), we show only indirect light to emphasize caustic
contributions. Note the two shifts excel on different kinds of caustics.

9.3 Rendering Results
In this section we compare our results in three contexts: explicitly
versus Bekaert et al.’s [2002] path reuse, general quality comparisons
to other real-time methods, and comparisons in an offline context.
Average light levels vary widely across our scenes, so we tone

map for visual presentation. But we report errors with MAPE13
(mean absolute percentage error) on HDR results. This L1 metric is
more resistant to occasional fireflies in sample-reuse algorithms.
For comparisons, we used Falcor’s [Kallweit et al. 2021] built-in

unidirectional path tracer, and implemented ReSTIR PT, Bekaert-
style path reuse (BPR) [Bekaert et al. 2002], ReSTIR GI [Ouyang et al.
2021], and ReSTIR DI [Bitterli et al. 2020] using this framework.

Versus Path Reuse. In Figure 14, we compare ReSTIR PT with a
reconnection shift, path tracing and BPR. We reimplemented BPR
per Bekaert et al. [2002], by sampling a path tree for each pixel,
dividing the image into N-rooks tiles, and connecting pixels to all
paths within a tile using a reconnection shift. We use 16-pixel tiles.
But path reuse over tiles, especially at low sample counts, intro-

duces obvious tile boundaries. ReSTIR-style reuse does not introduce
artificial edges, as reuse radii are selected separately per-pixel. Due
to tile artifacts, we skip further real-time comparisons with Bekaert.

Real-Time Rendering. For real-time comparisons, all algorithms com-
pute direct lighting via ReSTIR DI [Bitterli et al. 2020], unless oth-
erwise mentioned. Image differences thus depend on how various
algorithms compute indirect illumination. The second and third
columns in Figure 15 toggle ReSTIR DI. It greatly reduces variance
in direct light, but noise in indirect light requires other methods.

For equal-time comparisons, we render with ReSTIR PT using the
hybrid shift and increase sample counts in other methods to reach
(approximately) equal time. For ReSTIR PT with the reconnection

13We use MAPE(𝐼 , 𝐼gt) = mean
( ���𝐼−𝐼gt

���
0.01·mean

(
𝐼gt

)
+𝐼gt

)
, for 𝐼gt a grayscale ground-truth.

(a) Path Tracing
MAPE: 0.958

(b) BPR
MAPE: 0.898

(c) Ours (reconn.)
MAPE: 0.325

(d) Reference

Fig. 14. (b) BPR [Bekaert et al. 2002] often reduces error versus (a)
path tracing, but causes distracting structural artifacts at low sample
counts. (c) Our ReSTIR PT gives less error without structural artifacts,
despite also reusing spatially. Equal-time comparison in Kitchen (33
ms for uncropped images). All methods use ReSTIR DI for direct light.

shift, we run multiple independent ReSTIR chains simultaneously
to match this cost. Figures 12 to 15 were captured during camera
motion, to prevent ReSTIR PT from overly relying on temporal reuse
for visual quality. We use no antialiasing or denoising.

In Figure 15, our ReSTIR PT with either our hybrid or reconnec-
tion shifts achieves the lowest error. Our hybrid shift significantly
improves quality for glossy and refractive surfaces, e.g., the refrac-
tive wine glasses, the mirror in SanMiguel, the metal in VeachAjar,
and the multi-layer surfaces in ZeroDay and VeachAjar scene.

Our hybrid shift also reduces noise near geometric edges (e.g., the
first Kitchen inset). But the reconnection shift outperforms when
more, cheaper samples are better, e.g., on sufficiently rough surfaces
(the second Kitchen inset) or to help reduce color noise (the second
Zeroday inset).
Numerically, ReSTIR PT achieves 24% - 75% lower MAPE com-

pared to path tracing (both with ReSTIR DI), but we find subjective
visual improvement much larger. The supplemental material con-
tains a result viewer for visual inspection.

Figure 1 compares ReSTIR PT on two complex scenes, with MAPE
16% lower than ReSTIR GI. While ReSTIR GI handles diffuse surfaces
well, glossy surfaces and refractions and handled poorly, introducing
bias. All methods in Figure 15 are unbiased.

Offline Rendering. For offline comparisons, we show 5 second equal-
time renderings in representative scenes (see Figure 16). In Figure 17
we show convergence plots (up to 640 seconds) for all scenes. These
figures show results and measure error only for indirect light.

Our ReSTIR PT with either hybrid or reconnection shifts outper-
forms path tracing and BPR in both short and long rendering times.
BPR outperforms path tracing except in Zeroday, where BPR’s re-
connection shifts interact poorly with the shiny multi-layer surfaces.
ReSTIR PT with reconnection shifts benefits from the amortization
of sample costs when using GRIS, converging much faster than BPR.

Across our scenes, BPR reaches the same MAPE up to 2.8× faster
than path tracing, while our ReSTIR PT with the reconnection shift
converges up to 14.4× faster, and ReSTIR PT with the hybrid shift
converges up to 10× faster. ReSTIR GI gives good quality sampling
on diffuse surfaces, but adds bias; its glossy reflections can be low-
quality even after accumulating many frames.
Interestingly, our hybrid shift’s advantage in real-time render-

ing does not fully transfer to offline, though both shifts provide a
large improvement over alternate methods. The only exception is
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Fig. 13. (Top) Equal time (25 ms) comparison of path tracing and
ReSTIR PT with different shifts for our glass bunny. (Bottom) For San
Miguel (60 ms), we show only indirect light to emphasize caustic
contributions. Note the two shifts excel on different kinds of caustics.

9.3 Rendering Results
In this section we compare our results in three contexts: explicitly
versus Bekaert et al.’s [2002] path reuse, general quality comparisons
to other real-time methods, and comparisons in an offline context.
Average light levels vary widely across our scenes, so we tone

map for visual presentation. But we report errors with MAPE13
(mean absolute percentage error) on HDR results. This L1 metric is
more resistant to occasional fireflies in sample-reuse algorithms.
For comparisons, we used Falcor’s [Kallweit et al. 2021] built-in

unidirectional path tracer, and implemented ReSTIR PT, Bekaert-
style path reuse (BPR) [Bekaert et al. 2002], ReSTIR GI [Ouyang et al.
2021], and ReSTIR DI [Bitterli et al. 2020] using this framework.

Versus Path Reuse. In Figure 14, we compare ReSTIR PT with a
reconnection shift, path tracing and BPR. We reimplemented BPR
per Bekaert et al. [2002], by sampling a path tree for each pixel,
dividing the image into N-rooks tiles, and connecting pixels to all
paths within a tile using a reconnection shift. We use 16-pixel tiles.
But path reuse over tiles, especially at low sample counts, intro-

duces obvious tile boundaries. ReSTIR-style reuse does not introduce
artificial edges, as reuse radii are selected separately per-pixel. Due
to tile artifacts, we skip further real-time comparisons with Bekaert.

Real-Time Rendering. For real-time comparisons, all algorithms com-
pute direct lighting via ReSTIR DI [Bitterli et al. 2020], unless oth-
erwise mentioned. Image differences thus depend on how various
algorithms compute indirect illumination. The second and third
columns in Figure 15 toggle ReSTIR DI. It greatly reduces variance
in direct light, but noise in indirect light requires other methods.

For equal-time comparisons, we render with ReSTIR PT using the
hybrid shift and increase sample counts in other methods to reach
(approximately) equal time. For ReSTIR PT with the reconnection
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Fig. 14. (b) BPR [Bekaert et al. 2002] often reduces error versus (a)
path tracing, but causes distracting structural artifacts at low sample
counts. (c) Our ReSTIR PT gives less error without structural artifacts,
despite also reusing spatially. Equal-time comparison in Kitchen (33
ms for uncropped images). All methods use ReSTIR DI for direct light.

shift, we run multiple independent ReSTIR chains simultaneously
to match this cost. Figures 12 to 15 were captured during camera
motion, to prevent ReSTIR PT from overly relying on temporal reuse
for visual quality. We use no antialiasing or denoising.

In Figure 15, our ReSTIR PT with either our hybrid or reconnec-
tion shifts achieves the lowest error. Our hybrid shift significantly
improves quality for glossy and refractive surfaces, e.g., the refrac-
tive wine glasses, the mirror in SanMiguel, the metal in VeachAjar,
and the multi-layer surfaces in Zeroday and VeachAjar scene.

Our hybrid shift also reduces noise near geometric edges (e.g., the
first Kitchen inset). But the reconnection shift outperforms when
more, cheaper samples are better, e.g., on sufficiently rough surfaces
(the second Kitchen inset) or to help reduce color noise (the second
Zeroday inset).
Numerically, ReSTIR PT achieves 24% - 75% lower MAPE com-

pared to path tracing (both with ReSTIR DI), but we find subjective
visual improvement much larger. The supplemental material con-
tains a result viewer for visual inspection.

Figure 1 compares ReSTIR PT on two complex scenes, with MAPE
16% lower than ReSTIR GI. While ReSTIR GI handles diffuse surfaces
well, glossy surfaces and refractions and handled poorly, introducing
bias. All methods in Figure 15 are unbiased.

Offline Rendering. For offline comparisons, we show 5 second equal-
time renderings in representative scenes (see Figure 16). In Figure 17
we show convergence plots (up to 640 seconds) for all scenes. These
figures show results and measure error only for indirect light.

Our ReSTIR PT with either hybrid or reconnection shifts outper-
forms path tracing and BPR in both short and long rendering times.
BPR outperforms path tracing except in Zeroday, where BPR’s re-
connection shifts interact poorly with the shiny multi-layer surfaces.
ReSTIR PT with reconnection shifts benefits from the amortization
of sample costs when using GRIS, converging much faster than BPR.

Across our scenes, BPR reaches the same MAPE up to 2.8× faster
than path tracing, while our ReSTIR PT with the reconnection shift
converges up to 14.4× faster, and ReSTIR PT with the hybrid shift
converges up to 10× faster. ReSTIR GI gives good quality sampling
on diffuse surfaces, but adds bias; its glossy reflections can be low-
quality even after accumulating many frames.
Interestingly, our hybrid shift’s advantage in real-time render-

ing does not fully transfer to offline, though both shifts provide a
large improvement over alternate methods. The only exception is
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VeachAjar, where the glossy teapots significantly benefit from the
hybrid shift mapping in equal-time comparisons.

We postulate the following explanation. While better shift maps
improve spatial reuse, they also improve temporal reuse (which
improves future spatial reuse). Better temporal reuse is thus a very
beneficial investment. For offline rendering we disable temporal
reuse, losing this extra advantage from improved temporal shift
maps (like our hybrid shift).

Equal-time comparisons are impacted by GPU thread divergence,
as threads often trace path of different lengths. Comparing conver-
gence at equal sample counts (Figure 18) rather than equal time, our
hybrid shift is generally better than the reconnection shift, except
for the caustic paths in Figure 13 (bottom). This suggests run-time
cost is overcoming our hybrid shift benefits. Divergence can be
improved by better workload balancing and other optimizations,
which may make our hybrid shift more generally appealing.

10 CONCLUSION
We introduce a generalized RIS theory, extending resampled im-
portance sampling [Talbot 2005] to enable reusing correlated paths,
taken from multiple domains (pixels) using context-aware shift
mappings. Resampling gives asymptotically perfect importance sam-
pling according to a user-specified target function 𝑝 ; choosing 𝑝 = 𝑓

yields asymptotically zero-variance integration. See Figure 3 for a
summary of key algorithmic differences versus RIS.

Building on this theory, we reformulate ReSTIR’s spatiotemporal
reuse to remain consistent and unbiased even for long paths or
complex specular transport. As in Bitterli et al. [2020] and Ouyang
et al. [2021], our streaming algorithms amortizes path generation
over many pixels, leveraging GPU parallelism and temporal path
histories to dramatically reduce variance at interactive framerates.
Beyond better robustness from a consistent and unbiased algo-

rithm, we further improve on ReSTIR GI [Ouyang et al. 2021] with
a new hybrid shift map that reduces noise. This extends the toolbox
of commonly-used building blocks for shift maps by accounting for
the sampled BSDF lobe and preselecting connection vertices to limit
memory traffic. Somewhat surprisingly, ReSTIR PT can even reuse
simple caustic paths in many cases.

Our theory gives conditions under which we can guarantee these
improvements. Users must account for domain changes with appro-
priate MIS weights; avoid unbounded 𝑓 /𝑝 ratios; control resampling
weight variance Var [∑𝑤𝑖 ]; ensure a sufficient number of canonical
paths to avoid undersampling parts of the domain; and, if accumu-
lating frames, use a reasonable𝑀-cap to limit temporal correlation.
Based on these constraints, we introduce an interactive ReSTIR

PT and show how to properly reuse paths for consistent offline
rendering. These redesigned algorithms avoid unpleasant surprises,
e.g., cases like Figure 2 where pixels converge slowly, if at all.

10.1 Future work
We believe our GRIS theory will help drive a variety of future re-
search on resampling and path reuse algorithms.

Shift mappings and gradient-domain rendering. Our extended lobe-
path space could benefit shift mapping in gradient-domain problems,
including for more efficient manifold exploration [Lehtinen et al.

2013]. Manifold exploration could also help where local shift deci-
sions prove limiting to our hybrid shift (e.g., Figure 13, bottom).

Color noise. ReSTIR resamples paths using grayscale target func-
tions |𝑓 |, which importance samples pixel brightness but not chroma
𝑓 /|𝑓 |. Modifications could perhaps resample between wavelengths
or use hero wavelengths to help with color noise.

MIS between shift mappings. GRIS can naturally MIS between
multiple shift maps, as it supports correlated samples. E.g., we could
resample a single sample with multiple shift maps applied, automat-
ically giving more effective shifts higher selection probabilities.

Undersampling. GRIS, ReSTIR, and sample reuse can still suffer
from undersampling. In screen space implementations, like ours,
reuse may be limited by undersampling of tiny geometry or very
high frequency light, e.g., sharp caustics. This can cause noise,
streaks, or splotches and requires further investigation.
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Fig. 15. Comparing path tracing and two variants of our ReSTIR PT (reconnection and hybrid shift) for real-time rendering (all methods use
ReSTIR DI for direct light). Images are captured during an animation sequence. MAPE are computed using HDR images.
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Fig. 16. Visual comparison in the VeachAjar and Zeroday scenes using our offline ReSTIR variant, all rendered in 5 seconds.
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Fig. 17. Offline rendering error comparison in terms of time spent on rendering (5-640 second range).
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A THEOREMS
In this appendix we present the most important mathematical theo-
rems for generalized RIS. The proofs are found in the supplemental
document, Section S.5. Convergence with dependent samples is
proved in Section S.2.

A.1 Unbiased Contribution Weights, Section 4.2
Theorem A.1. Let 𝑋 and real-valued𝑊 be random variables in Ω.

The following are equivalent:

(1) For all integrable 𝑓 : Ω → R,

E [𝑓 (𝑋 )𝑊 ] =
∫

supp(𝑋 )
𝑓 (𝑥) d𝑥, (55)

(2) 𝑊 is an unbiased estimator for 𝑋 ’s reciprocal marginal density,

E [𝑊 | 𝑋 ] = 1
𝑝𝑋 (𝑋 )

. (56)

Proof. Section S.5.1. □
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A.2 Asymptotic Sample Distribution, Section 4.4
Theorem A.2 (Asymptotic Sample Distribution). Assume, for

each 𝑀 (separately, starting from some 𝑀0) a sequence of samples
(𝑋𝑖 ∈ Ω𝑖 )𝑀𝑖=1 (we omit the index𝑀 for brevity), and that we resample
𝑌𝑀 (=𝑇𝑠𝑀 (𝑋𝑠𝑀 )) proportionally to weights𝑤𝑀,𝑖 given by Equation 19.
Assume also that the generated samples cover the support of 𝑝 ,

supp𝑝 ⊂ supp𝑌𝑀 when𝑀 ≥ 𝑀0 . (57)

If the variance of the weight sums tends to zero, i.e.,

Var
[
𝑀∑
𝑖=1

𝑤𝑀,𝑖

]
𝑀→∞−−−−−→ 0, (58)

Then,

(1) 𝑝𝑌 converges to 𝑝 in probability, i.e., for any 𝜀 > 0

Pr[|𝑝𝑌 (𝑌 ) − 𝑝 (𝑌 ) | > 𝜀] 𝑀→∞−−−−−→ 0. (59)

(2) the density ratio 𝑝 (𝑌 )/𝑝𝑌 (𝑌 ) approaches 1 in mean square, i.e.,

E

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 1

����
2
]

𝑀→∞−−−−−→ 0. (60)

(3) the integral of the absolute error of 𝑝𝑌 from 𝑝 approaches 0, i.e.,∫
Ω
|𝑝𝑌 (𝑦) − 𝑝 (𝑦) | d𝑦 𝑀→∞−−−−−→ 0. (61)

(4) in the set in which 𝑝𝑌 (𝑦) converges, it converges to 𝑝 (𝑦) (except
for a possible set of zero measure),

(5) each subset of Ω will asymptotically get the correct ratio of
samples.

Proof. Section S.5.2. □

A.3 Asymptotic Variance, Section 5.2
Theorem A.3 (Asymptotic Variance). In addition to the assump-

tions of Theorem A.2, assume that 𝑓 ≥ 0 and

𝑓 ≤ 𝐶𝑓 𝑝 for some 𝐶𝑓 > 0. (62)

Then, the generated samples 𝑌 cover the support of 𝑝 and 𝑓 , and

(1) 𝑓 (𝑌 )𝑊𝑌 approaches 𝑓 (𝑌 )/𝑝 (𝑌 ) in mean, mean square and
probability, i.e.,

E

[����𝑓 (𝑌 )𝑊𝑌 −
𝑓 (𝑌 )
𝑝 (𝑌 )

����
𝑝 ]

𝑀→∞−−−−−→ 0 for 𝑝 = 1, 2, and (63)

Pr
[����𝑓 (𝑌 )𝑊𝑌 −

𝑓 (𝑌 )
𝑝 (𝑌 )

���� > 𝜀

]
𝑀→∞−−−−−→ 0 for all 𝜀 > 0. (64)

(2) 𝑓 (𝑌 )𝑊𝑌 has asymptotically the variance of 𝑓 (𝑋 )/𝑝 (𝑋 ) where
𝑋 has density 𝑝 (𝑋 ),

Var [𝑓 (𝑌 )𝑊𝑌 ] 𝑀→∞−−−−−→ Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
. (65)

(3) If 𝑝 (𝑥) ∝ 𝑓 (𝑥), then also

Var [𝑓 (𝑌 )𝑊𝑌 ] 𝑀→∞−−−−−→ 0. (66)

Proof. Section S.5.3. □

A.4 Resampling Weight Bounds, Section 5.6
Theorem A.4 (ResamplingWeight Bounds). Let the resampling

weights𝑤𝑖 of input samples 𝑋𝑖 be given by Equation 19, and associate
all source domains Ω𝑖 with target distributions 𝑝𝑖 . Let 𝑅 be the indices
of the canonical samples, and assume |𝑅 | ≥ 1.
If𝑚𝑖 are given by one of the MIS weight schemes defined in Equa-

tions 36, 37 or 38, and sample 𝑋𝑖 is reasonably distributed for integrat-
ing 𝑝𝑖 (i.e., 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶𝑖 for some 𝐶𝑖 ), then the resampling weight
of 𝑋𝑖 is bounded as

𝑤𝑖 ≤ 𝐶𝑖

|𝑅 | . (67)

Proof. Section S.1.3. □

B CORRECTNESS NOTES
This section discusses some aspects of ReSTIR that may affect per-
formance and correctness.

On Visibility. Relating to the discussion in Section 6.1, ReSTIR
DI [Bitterli et al. 2020] used a target 𝑝𝑖 without the visibility term
𝑉 (x1 ↔ x2). Our ReSTIR PT always considers visibility between ver-
tices. In fact, neglecting visibility makes maintaining convergence
guarantees tricky, as it creates paths with positive 𝑝𝑖 that never
get sampled as 𝑋𝑖 due to occlusion. This implies supp 𝑝𝑖 ⊄supp𝑋𝑖 ,
making 𝑋𝑖 non-canonical.

Without extra guarantees, 𝑌 resampled from 𝑋𝑖 no longer covers
supp𝑝𝑖 , breaking the supp𝑝 ⊂ supp𝑌𝑀 assumption of Equation 23
and preventing convergence of 𝑝𝑌 to 𝑝 .

ReSTIR DI circumvents this by closely tracking reuse throughout
each algorithmic phase. While its 𝑝𝑖 for temporal reuse checks
for visibility, its spatial reuse uses an unoccluded target 𝑝−𝑉𝑖 to
reduce cost. Without full coverage of 𝑝−𝑉𝑖 ’s domain, intermediate
distributions never converge. The design still ensures coverage of
𝑓𝑖 ’s domain, allowing final estimators to remain unbiased. For direct
lighting, earlier convergence to 𝑝𝑖 may only be of theoretic interest,
with Bitterli et al.’s [2020] choices working around a bottleneck from
visibility costs. In path tracing, ignoring visibility requires much
more engineering, as typical path samplers never select occluded
paths with 𝑉 (x𝑖 ↔ x𝑖+1) = 0.

Temporal Reuse. Temporal sample reuse is unbiased with proper
MIS weights, e.g., our generalized Talbot or pairwise MIS, but a tem-
poral shift mapping is needed, as evaluating MIS weights for GRIS
requires bijectively shifting paths between the prior and current
frames. In some cases, e.g., conflicting motion vectors, careful map
definitions may be needed to retain bijectivity.

This constraint means fully unbiased temporal reuse must evalu-
ate paths in both the current and prior frames, which is tricky in
dynamic environments. Biased approximations to temporal MIS can
be used, e.g., neglecting visibility [Ouyang et al. 2021], which gives
desirable performance improvements for often imperceptible bias.
Lin et al. [2021] explicitly account for temporal changes, reporting
it reduces response time to dynamic lighting.
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