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ABSTRACT

This dissertation proposes high-quality sampling methods for real-time rendering of

complex effects with ray tracing. Real-time ray tracing significantly improves the visual

quality in real-time rendering applications in recent years. However, the application is

mostly on simple effects like reflection and shadow, which require few samples. To render

complex effects like global illumination and volumetric multiple scattering, it is critical for

the sampling algorithm to be intelligent to avoid generating a large number of samples to

achieve acceptable quality. In this dissertation, we develop an algorithm to combine raster-

ization and stochastic ray tracing to render shadowed illumination from a large number

of virtual point lights. We then introduce a light tree sampling algorithm to efficiently

estimate illumination in general many light scenarios in fully dynamic scenes. Moreover,

we propose a real-time volume rendering method based on reservoir resampling that can

render heterogeneous volume with multiple scattering in dynamic, complex scenes. We

further generalize the resampled importance sampling theory to support more robust

spatiotemporal reuse to dramatically improve the real-time sampling quality of difficult

paths in global illumination.
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CHAPTER 1

INTRODUCTION

Most traditional real-time rendering techniques rely on precomputation for complex

lighting effects. For example, lightmap or irradiance volumes are baked to achieve diffuse

global illumination in real-time. This precomputation approach limits the completeness,

interactivity, and accuracy of the lighting effects. Recent advances in ray tracing hard-

ware [13] and algorithms and the invention of high-quality denoisers [2, 14] introduce

a paradigm shift from precomputed lighting to sampled lighting. A limited number of

rays can be generated per frame to render simple effects like specular reflection, ambient

occlusion, or soft shadow reasonably well after denoising [15]. However, using the same

brute force Monte Carlo sampling leads to very high variance for complex effects like

global illumination, which cannot be denoised well. In this dissertation, we propose

several methods that improve the quality of sampling in real-time rendering for various

complex effects. These algorithms use GPU-friendly simple data structures to minimize

the performance overhead of sampling. We first explore the combination of rasterization

and ray tracing to produce a low-noise, biased illumination estimation from many lights

to approximate diffuse-dominant global illumination. Then we move to a completely

sampling-based method that uses spatial tree structures to produce unbiased estimates

for many light illumination. Later, we explore a recently introduced resampling theory

based on spatiotemporal reuse to design a high-quality sampling algorithm for real-time

volume rendering in complex environments. Finally, we generalize that resampling theory

to fundamentally improve its quality and robustness to handle more complex effects in

global illumination.
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1.1 Contributions
The key contributions of this dissertation are listed as follows:

• We present an efficient method for lighting grid hierarchy [16] construction, ren-

dering, and shadow sampling on the GPU, using a hybrid ray tracing-rasterization

approach (Chapter 3). This allows rendering high-quality diffuse-dominant global

illumination in complex scenes using many virtual lights, including dynamic light-

ing and dynamic geometry at real-time frame rates.

• We propose perfect balanced light trees that allows extremely fast construction and

high traversal performance (Chapter 4). Combining our tree with stochastic lightcuts

[4], we provide a high-performance solution for general many-light rendering with

arbitrary light types.

• We equip ReSTIR [7] with the ability to sample complex path spaces and use it as

an efficient importance sampling estimator for the volumetric path integral (Chap-

ter 5). With optimized path space transmittance estimates and a novel temporal

reprojection method, we achieve low-noise, interactive volumetric rendering with

arbitrary dynamic lighting, including volumetric emission, and maintain interactive

performance even on high-resolution volumes.

• We introduce generalized resampled importance sampling (GRIS) as a new theo-

retical framework that lifts the independent and identically distributed (i.i.d.) as-

sumption of RIS [17] (Chapter 6). Besides providing a theoretical foundation for

ReSTIR, our theory deepens the understanding of convergence and guides the design

of advanced shift mappings for effective reuse across different sampling domains.

This allows us to develop ReSTIR Path Tracing, a robust, unbiased light transport

algorithm that can handle even very complex lighting scenarios (e.g., caustics) while

remaining fully amenable to efficient GPU parallelization and real-time use. The

algorithm can also be repurposed for offline rendering, providing superior conver-

gence to unidirectional path tracing and prior work in path reuse.
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1.2 Dissertation Statement
High-quality sampling, i.e., sampling methods that generate low-noise results with a

low sample count, is important for synthesizing complex effects like many-light rendering,

global illumination, and volume rendering in real-time rendering. Specifically, we can

develop sampling algorithms that leverage the ray tracing capability of GPUs to produce

real-time rendering results of these complex lighting effects with low cost and high quality,

which is hard to achieve by naive sampling algorithms.

1.3 Dissertation Organization
This dissertation is structured as follows:

In Chapter 2, we review the prior work of many light rendering, real-time global illu-

mination, volume rendering, and path reuse to provide background for the topics in later

chapters.

In Chapter 3, we introduce Real-Time Rendering with Lighting Grid Hierarchy, a biased

solution for diffuse global illumination from a large number of virtual point lights.

In Chapter 4, we introduce Real-Time Stochastic Lightcuts, a general many-light render-

ing method that features perfectly balanced light trees.

In Chapter 5, we introduce Fast Volume Rendering with Spatiotemporal Reservoir Resam-

pling that allows volume rendering with complex effects like multiple scattering and self-

emission to be rendered with arbitrary dynamic lighting and volume animation, while

significantly outperforming the state-of-art path tracing approaches.

In Chapter 6, we introduce Generalized Resampled Importance Sampling (GRIS) that gen-

eralizes the theory of resampled importance sampling (RIS) and provides a foundation for

ReSTIR. With the theory, we develop ReSTIR Path Tracing (ReSTIR PT), an unbiased global

illumination method that better handles complex light transport and is robust enough to

be even used for offline rendering.

Finally, we conclude in Chapter 7.



CHAPTER 2

BACKGROUND

Sampling, importance sampling, and sample reuse are key to modern renderers and

form a substantial body of research in graphics, since they are crucial to efficiently render

complex effects we study in this dissertation, including many light direct illumination,

volume rendering, and general global illumination. A common problem for these effects

is that efficiently sampling from the related integrals is difficult. By writing these integrals

into a common form
∫

Ω f (x)dx, where Ω is the sampling domain and x is the variable

(e.g., a scattering direction, a collision distance, a position on emissive surfaces) we want

to sample, the N-sample Monte Carlo estimator is expressed as

1
N

N

∑
i=1

f (Xi)

p(Xi)
.

We would like p(x) ≈ f (x)/
∫

Ω f (x)dx to minimize the variance of importance sampling.

Finding a good p(x) is difficult due to the unknown (before the sample is evaluated)

quantities in the integrand, like visibility and transmittance. In many cases, f (x) is defined

in a recursive way, requiring nested integrals, making the shape of the integral difficult to

predict. Even with known integrands, it is often difficult to find its (or its approximation’s)

integral in a closed form, making the CDF inversion method infeasible.

Numerous offline rendering methods exist to reduce variance in the sampling pro-

cess. When targeting real-time, even with hardware ray tracing, improving quality at

iso-performance is insufficient; results with low sample budgets need denoising [18, 19, 20,

2]. However, denoising inputs with insufficient sampling quality leads to low-frequency

noise, blurring, and a lack of temporal stability. Therefore, it is important to develop

real-time sampling methods with high quality.

The methods we propose in this dissertation provide high-quality real-time sampling.

We define easy-to-sample p(x) using tree structures (Chapter 4) or generating samples

with good p(x) based on resampling, whose efficiency comes from the reuse of lighting ap-
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proximation (Chapter 3), or sampling distribution (Chapter 5, 6). The methods presented

in this dissertation fit into a rich history of path reuse [11, 21], ratio estimators [22, 23],

light importance sampling [24, 25], and various structures to accelerate sample lookups

[26, 27, 3]. While also being variance reduction methods, the methods we propose respect

real-time GPU rendering constraints with cheap data structures, low computational over-

head, quick response to lighting or geometry change, and the ability to reach low error

with low sample count (potentially sacrificing long-term convergence).

Having a unified solution that works for all complex effects with these constraints is

difficult. Generally, we need to take advantage of the domain knowledge and combine

ideas from state-of-art real-time rendering methods. In Section 2.1, Section 2.2, and Sec-

tion 2.3, we review prior work on the rendering of the complex effects we study in the

dissertation. Besides introducing sampling-based methods, we also introduce real-time or

offline methods based on approximation and precomputation to provide the readers with

an overview of the state of the art. Details about directly related works (e.g., stochastic

lightcuts [4]) will be introduced in later chapters. The later part of the dissertation builds

on path reuse and sample reuse. We review the background of path reuse in Section 2.4.

2.1 Many-Lights Rendering
The many-lights problem received considerable attention in computer graphics [28],

starting with ordering lights based on their contributions [29], stochastic sampling [24],

light clustering using octrees [30], and precomputed visibility culling [31]. The introduc-

tion of virtual point lights (VPLs) for approximating global illumination [32] has drawn

more research interests into the many-lights problem. We review the prior work for VPL

rendering in Chapter 3. The lightcuts method [26] provides a highly efficient scalable

solution to the many lights problem by forming a binary light tree from the light sources.

For each point in the scene, where lighting is evaluated, the lightcuts method picks a cut

through the light tree and only computes the representative lights of the internal light tree

nodes above this cut. It is also possible to avoid computing a cut for each pixel using

reconstruction cut [26] or lightcut interpolation [33]. The extensions of lightcuts address

high-dimensional integrations [34], progressive GPU implementation [35], bidirectional

sampling [36], and out-of-core GPU implementation for large scenes [37].
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The unbiasedness of lightcuts is achieved by randomizing the tree building. How-

ever, in one rendering, the correlation of pixel illumination estimates can cause distracting

artefacts with insufficient cut size due to using a common set of lights for a large num-

ber of pixels. Recent methods use light tree for independent sampling to overcome the

correlation. Vévoda and Křivánek [38] used the clusters formed by lightcuts for adaptive

importance sampling of direct illumination instead of using them directly as the illumi-

nation approximation. A following work [39] uses Bayesian online regression to learn

the light selection probability distributions for the light clusters. Keller et al. [40] added

additional node information into the light tree, where each node stores directionally vary-

ing light intensities, instead of a single flux. Adaptive tree splitting [41] introduced a light

bounding volume hierarchy (BVH) with a technique that splits light tree traversal based on

the cluster variance. Yuksel [4] introduced stochastic lightcuts which provides low noise

results using much fewer samples than other methods. With the advancement of high-

quality denoisers and ray tracing capable GPUs, it is now possible to implement Monte

Carlo sampling algorithms on the GPU using limited samples. Moreau and Clarberg [42]

presented a version of adaptive tree splitting [41] for real-time rendering, and Moreau et

al. [3] introduced a two-level light BVH builder for dynamic scenes. We extend stochastic

lightcuts with perfect binary trees to maximize its efficiency for real-time rendering in

Chapter 4.

An alternative solution to the many-lights problem is to form a lighting matrix and

approximate its solution [43], known as matrix row-column sampling (MRCS). The ex-

tensions of this approach include a method for handling glossy surfaces [44], reducing

flickering by processing animated sequences [45], and using cuts [46] or a reduced matrix

[47] for accelerating the computation.

The lighting grid hierarchy method [16] introduces a temporally coherent approxima-

tion of a large number of virtual point lights for rendering self-illuminating volumes by

using multiple representations of the illumination at different resolutions. We extend this

method in Chapter 3 by providing a GPU-friendly variant that is suitable for real-time

rendering with many lights.
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2.2 Global Illumination
General global illumination includes all possible types of light paths. Offline rendering

usually solves global illumination by path tracing and photon mapping. We refer the

readers to the PBRT book [48] for a survey. In a real-time rendering context, many path

types are too difficult to handle by common methods. Most real-time global illumination

algorithm limits themselves to solve mostly diffuse (or slightly glossy) indirect illumina-

tion. Precomputation is popular in game engines for approximating global illumination in

mostly static lighting environment. Lightmaps or light probes (irradiance volume) [49] are

most effective for diffuse reflection. Dynamic global illumination methods compute a fast

estimation of the rendering equation on the fly using various simplifications, including

geometry approximations using voxels [50, 51], surfels [52, 53], or spheres [54, 55]; lighting

approximations using photons [56, 57], virtual point lights [32, 58], or spherical functions

[59, 60, 61]; screen space techniques [62, 63, 64, 65, 66]; caching [67, 68]; or reconstruction

from sparse samples [69, 70, 71]. Our many-light solutions in Chapter 3 and 4 can provide

real-time illuminations from large number of VPLs, which are effective in rendering diffuse

indirect illumination.

With real-time ray tracing, the flexibility and accuracy of real-time global illumination

can be dramatically improved. Dynamic diffuse global illumination [72] (or RTXGI) uses

ray tracing to update light probes in real-time to achieve dynamic diffuse GI at a low ray

budget. For higher quality rendering that does not rely on interpolation, each pixel needs

to use an unbiased estimator of the path integral. This can be made efficient through path

reuse, which is introduced in Section 2.4. We introduce methods based on path reuse in

Chapter 5 and 6 that compute unbiased global illumination with general material types.

2.3 Volume Rendering
Participating media like smoke, fog, cloud, and fire are ubiquitous in real life. The ren-

dering of heterogeneous participating media is yet another challenging topic for real-time

rendering, especially when considering multiple scattering and light interactions between

surfaces and particles. The volume rendering equation represents incident radiance L at

point x0 from direction ωo and integrates the outgoing radiance through volumetric media

Lm and the surface or light behind it, Ls
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L(x0, ωo) =
∫ zs

0
T(x0 ↔ x) σt(x) Lm(x, ωo) dz (2.1)

+ T(x0 ↔ xs) Ls(xs � x0) ,

where x = x0 − zωo is a point along direction ωo towards x0, σt(x) is the extinction

coefficient at x, and the transmittance function T(x0 ↔ x) represents visibility between

x0 and x

T(x0, x) = e−
∫ z

0 σt(x0−yωo)dy, (2.2)

and xs = x0 − zsωo is the corresponding surface along the ray. Lm includes volumetric

emission Lm
e and in-scattering

Lm(x, ωo) =
σa(x)
σt(x)

Lm
e (x, ωo) +

σs(x)
σt(x)

∫

S
ρ(x, ω, ωo)L(x, ω)dω, (2.3)

where σa and σs are absorption and scattering coefficients with σt(x) = σa(x) + σs(x), S is

the sphere of all directions, and ρ(x, ω, ωo) is the media’s phase function.

With multiple scattering, computing L(x, ω) inside the integral from Equation 2.3 via

Equation 2.1 is costly. Real-time rendering often uses coarse approximation for multiple

scattering [73]. For simple single scattering, with no volumetric emission and a few point

or directional lights, volumetric shadow mapping can achieve real-time rendering perfor-

mance [74, 75, 76, 77, 78, 79]. But these are inefficient for more general lighting conditions

and multiple scattering. Modern games use "froxel" representations [80] to align volumes

with the view frustum to minimize memory incoherence during traversal, but otherwise

behave similarly.

2.3.1 Monte Carlo Sampling for Volume Rendering

Path tracing and Monte Carlo sampling provide a more general solution for integrating

the volume rendering Equations 2.1, 2.2, and 2.3.

Importance sampling distance z (Equation 2.1) in a homogeneous volume (constant

σt) with a probability distribution function (PDF) proportional to σtT(x0, x) is trivial; the

resulting cumulative distribution function (CDF) 1 − e−zσt is easily inverted. The resulting

z values are called the free-flight distance. In heterogeneous volumes, regular tracking [81]

represents σt(x) with piecewise simple functions with analytically invertible CDFs, allow-

ing tracking of each piece separately to find scattering events via an exact PDF. In gen-

eral heterogeneous volumes, ray marching finds these events with an approximated PDF
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[82], which introduces bias to the result. Null-collision methods avoid bias by introducing

fictitious media to simplify the CDF. For example, delta tracking [83, 84] uses piecewise

constant majorant σ̄ (for σ̄ ≥ σt) and determines null collisions via a secondary Monte

Carlo process, but the sampling PDF is generally not available in closed form.

Recently, Miller et al. [9] introduces a special path space formulation including null

scattering to obtain analytical PDFs. But null-collisions can reduce performance in highly

uneven volumetric densities, when long chains of short null collisions occur. Acceleration

structures (e.g., super-voxels [85] and kd-trees [86]) partition space with separate, tighter

majorants to improve performance. Decomposition tracking [5] reduces overhead by split-

ting media into a constant density control volume and a residual volume, where tracking

occur separately and the minimum distance is taken. Kutz et al. [5] introduces weighted

delta tracking [87] to allow non-tight upper bounds in the residual volume.

Distance sampling techniques also apply to transmittance estimation. For example,

delta tracking gives a per-sample binary transmittance decision, based on if a real collision

occurs. Ratio tracking modifies delta tracking, replacing stochastic termination with its

expectation, giving non-binary transmittance and improving convergence speed. Resid-

ual ratio tracking uses fewer steps for ratio tracking by separating residual and control

components of the extinction function [6] and applies in various contexts [88, 89]. Recent

next-flight estimators [82] improve delta and ratio tracking efficiency if the fictitious media

has a lower density.

New integral formulations using power-series expansion improve transmittance esti-

mation via sample stratification [90]. Kettunen et al. [91] propose unbiased ray marching

that corrects biased methods with occasional higher order terms, leveraging ray marching

efficiency to compute low-noise transmittance.

Importance sampling ω in the phase function ρ [92] is similar to any bidirectional

scattering distribution function. However, explicitly sampling light sources with next event

estimation (NEE) often increases efficiency. NEE can be combined with other sampling via

multiple importance sampling (MIS). Miller et al. [9] use MIS to integrate in path space using

previously unknown PDFs. To efficiently integrate volumetric emission, Simon et al. [93]

introduce forward next event estimation (FNEE) that samples solid angle to perform line

integration.
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All these methods consider local sampling, rather than importance sampling full paths.

This limits quality, increasing samples needed to converge and reducing their real-time

appeal. Recent denoisers can filter noisy samples to a final image. But sample counts must

be sufficient to achieve post-filter temporal stability. Thus, improving sample quality is

vital, even with state-of-the-art denoising.

2.3.2 Bidirectional Volume Rendering

Bidirectional methods consider entire paths to improve sampling quality. Equiangular

sampling [94] jointly samples a light vertex and the penultimate path vertex receiving

in-scattered light. Joint importance sampling [95] allows double scattering with a joint

distribution. Zero-variance random walks further extend joint sampling, building random

walks with near-zero variance by considering all terms in the path integral. In some

scenarios, this applies to subsurface scattering [96, 97] and can improve path guiding [98]

in general participating media.

Other bidirectional techniques estimate photon density using volumetric photon maps

[99]. Density estimation queries can be improved using beams [100]. Higher dimensional

primitives, such as photon beams [101], photon planes and volumes [102], and photon

surfaces [103] can significantly reduce variance.

Bidirectional techniques based on virtual lights [104, 105] also benefit from higher

dimensional light representations. Combining different kinds of density estimation with

path tracing [106] often provides a robust framework to optimally sample across various

scenes.

However, bidirectional methods often use complex data structures with costly genera-

tion and maintenance phases. This adds often insurmountable engineering complexity in

real-time contexts.

2.4 Path Reuse
To enable higher quality and more general global illumination effects that potentially

contain high-frequency information, popular real-time GI methods that rely on subsam-

pling, scene simplification, and interpolation are insufficient. Using path tracing to gen-

erate independent samples on each pixel can avoid blurring the signal in principle, but
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it remains impractical due to an insufficient number of samples that can be generated in

real-time. A potential solution is path reuse [11]. The principle is already widely applied in

photon mapping and VPL rendering. But path reuse between pixels avoids the complexity

of density estimation and the strong correlation of using the same set of light paths for

all pixels. Path reuse can dramatically reduce variance in equal time compared to path

tracing with independent samples in diffuse scenes, though it imposes fairly high storage

and computation costs; paths must explicitly remain in memory to benefit others, and

visibility rays are required to connect neighbors.

More recent work reuses paths via finite differences in the gradient domain [107], which

can also apply to path tracing [108] and volume rendering [109].

Spatiotemporal reservoir resampling (ReSTIR) [7] is a recently introduced importance

sampling method which combines resampled importance sampling (RIS) [? ] and screen-

space spatiotemporal path reuse. By defining a target function that approximates the

integrand, spatiotemporal resampling reuses samples indirectly to improve PDFs, rather

than explicitly reusing paths for shading. In this sense, it is more akin to path guiding [110],

if done in a feed-forward, streaming fashion. The ReSTIR method reuses a large number

of samples spatiotemporally to dramatically improve the resulting sample distribution

compared to RIS. ReSTIR was first applied to direct lighting with reuse in screen space [7],

where the integration domains are fixed across pixels (i.e., the surface of all lights). Recent

work extends ReSTIR to world-space sample reuse [111, 112] and longer paths [10] for

global illumination, where integration domains and reasoning about correctness become

more complex. Chapter 5 shows our extension of ReSTIR to volumetric path space to

provide low-noise, interactive rendering of heterogeneous volumes in complex lighting

environments.

However, like other screen space path reuse techniques, ReSTIR leverages correlations

between pixels to achieve efficiency. With high geometric complexity or narrow BSDF

profiles, nearby pixels can have low correlation in their integrands. Reusing such neigh-

bors can often reduce the sampling quality instead of improving it. How to robustly

reuse spatiotemporal neighbors is still an open question. In Chapter 6, we introduce a

generalization of the resampled importance sampling theory to allow defining advanced

shift mappings between sampling domains to maximize the effectiveness of path reuse. In
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Section 2.4.1 and Section 2.4.2, we introduce related work on shift mappings and briefly

explain some key resampling algorithms as they are the foundation of the path reuse

algorithms in this dissertation.

2.4.1 Shift Mappings

Path reuse algorithms evaluate pixel color by reusing path samples between pixels.

As in ReSTIR and RIS, the formulation of Bekaert et al. [11] requires path samples to

come from a shared domain, while more recent work [21] allows different integration

domains and explicitly defines shift mappings to map paths between them. This better

reuses complex light transport paths, including specularity from glass and mirrors. By

extending RIS and ReSTIR to utilize general shift mappings, our method in Chapter 6

handles these complexities better than prior work that uses ReSTIR for GI [10].

Shift mappings originally arose in gradient-domain rendering [107, 108], where the

image is reconstructed with discrete image gradients, evaluated by subtracting a path’s

contribution from its copies shifted into adjacent pixels.

Many shift mappings have been developed: reconnecting to the earliest rough ver-

tex [107], manifold exploration shifts [107] and half-vector copying [108] for specular trans-

port, random number replay [113, 108, 114], and numerous extensions to e.g., bidirectional

path tracing [115], photon mapping [116, 109], participating media [109], vertex connection

and merging [117], and spectral rendering [118]. The recent survey of Hua et al. [114]

provides a more in-depth view to shift mappings and gradient-domain rendering.

2.4.2 Resampling Algorithms

Here we provide a brief review of resampling algorithms related to methods proposed

in this dissertation. More detailed introductions will be provided in Chapter 5 and 6.

2.4.2.1 Sampling Importance Sampling

Recent resampling methods build on sampling importance resampling (SIR) [119]. SIR

obtains better-distributed samples (Yi)
N
i=1 = (Y1, . . . , YN) by subsampling a set of indepen-

dent and identically distributed (i.i.d.) samples (Xi)
M
i=1 proportional to resampling weights

wi = p̂(Xi)/p(Xi), where p̂(x) represents a desired (potentially unnormalized) target

distribution. As M grows, the distribution of samples Yi converges to p̄ = p̂(x)/‖ p̂‖1. See
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Guetz [120] for an in-depth overview of SIR.

2.4.2.2 Resampled Importance Sampling (RIS)

Resampled Importance Sampling [8] introduces RIS, which provides proper normal-

ization for SIR-selected samples when used in Monte Carlo integration. RIS extends SIR

to allow sourcing (Xi)
M
i=1 from different probability distributions in a single domain and

provides multiple importance sampling (MIS) weights that ensure convergence to the

target distribution in such cases.

2.4.2.3 Reservoir-Based Resampling

Chao [121] introduces a reservoir sampling algorithm that selects a random sample

from the input set (Xi)
M
i=1 in a single-pass streaming manner. A reservoir stores the selected

sample, current stream length M, and sum of weights wi (i≤M); each new stream element

Xi replaces the selected sample with probability wi/ ∑j≤i wj. Reservoir sampling pairs

naturally with resampling; combined, they perform RIS in a streaming manner with a

constant memory footprint. ReSTIR [7] uses chained reservoir resampling to share samples

across pixels and frames. It alternately generates new independent samples for each reser-

voir (e.g., per pixel) and reuses samples between similar reservoirs (i.e., domains). Sharing

well-distributed samples across integration domains improves sample distribution and

amortizes costs of generating initial samples.



CHAPTER 3

REAL-TIME RENDERING WITH LIGHTING

GRID HIERARCHY1

In this chapter, we present an extension of the lighting grid hierarchy method for

real-time rendering with many lights on the GPU. We describe efficient methods for par-

allel construction of the lighting grid hierarchy and using it with deferred rendering. We

also present a method for estimating shadows from many lights with a small number of

shadow samples using the ray tracing API on the GPU. We show how our approach can be

used for real-time global illumination computation with virtual point lights. 1

3.1 Introduction
Rendering with a large number of light sources (i.e., the many-lights problem) has been

an important challenge in computer graphics. While there exist elegant offline rendering

methods that provide sublinear performance in the number of light sources [26, 43, 16], it

still remains an open problem for real-time rendering.

In this chapter, we provide an extension on the recently-introduced lighting grid hierar-

chy method [16], which was originally developed for rendering explosions by representing

their illumination using many point lights, and we make it suitable for general-purpose

real-time rendering on the GPU. Given a large number of light sources, we construct

a lighting grid hierarchy on the GPU and use it for efficiently approximating the total

lighting contribution from all lights in a deferred renderer. We achieve this by rendering

the lights within the lighting grid hierarchy as range-limited light volumes and using a

small number of shadow samples for approximating the shadows from all lights via a

new importance sampling algorithm. The computation of the chosen shadow samples is

performed using the recently-introduced ray tracing API on the GPU and a screen-space

1D. Lin and C. Yuksel, “Real-time rendering with lighting grid hierarchy,” Proceedings of the ACM in
Computer Graphics and Interactive Techniques (Proceedings of I3D 2019), vol. 2, no. 1, pp. 8:1–8:17, 2019.
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filter is used for eliminating the high-frequency noise of shadow sampling. We show

how our method can be used for computing global illumination (Figure 3.1) with a large

number of virtual point lights at real-time frame rates. The technical contributions in this

chapter include:

• An efficient method for lighting grid hierarchy construction on the GPU,

• An importance sampling algorithm for estimating shadow contributions of all lights

with a fixed memory footprint,

• A hybrid ray tracing-rasterization approach for high-quality diffuse-dominant global

illumination in complex scenes using many virtual lights, including dynamic light-

ing and dynamic geometry at real-time frame rates.

3.2 Background: VPL and Lighting Grid Hierarchy
In this section we briefly overview the related work in computer graphics regarding

VPL rendering. We also provide a summary of the lighting grid hierarchy method [16].

3.2.1 Prior Work in VPL Rendering

Most interactive global illumination methods aim to provide a fast estimation of the

rendering equation [122]. The method we describe in this chapter uses virtual point lights

(VPLs) [32]. Advantages of using VPLs include easy implementation, stable appearance,

Figure 3.1: An example frame rendered using our real-time global illumination solution
with one million virtual point lights, computed by our method, using α = 2 and 4 × 4
interleaved sampling. The render time is 24 ms on an NVIDIA RTX 2080 GPU at 1280× 720
resolution.
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and scalability. Due to the low-frequency nature of diffuse reflection, VPLs are particu-

larly effective in rendering diffuse indirect reflection, which, in many cases, is the most

important part of global illumination. However, the singularity of point lights causes

practical problems. Simply clamping the inverse square attenuation leads to energy loss.

Energy compensation methods that use path tracing [123], screen space sampling [124] or

a mixture with photon mapping [125] have been developed to solve this issue, but they are

computationally expensive, particularly for real-time rendering.

An important obstacle for using VPLs in real-time rendering has been the challenge

of efficiently handling many light sources. Clustered shading [126] is the first method

that presented real-time rendering performance with one million point lights; however,

it assumes local illumination. Stochastic light culling [127] achieves interactive rates by

fitting VPLs into the tiled shading framework [128], but introduces banding artifacts that

are difficult to filter. Forward light cuts [129] can compute the illumination of many VPLs

using a multi-scale radiance cache, but shadows are not accounted. More recently, Estevez

and Kulla [41] introduced an efficient method for importance sampling many lights during

path tracing by stochastically traversing a bounding volume hierarchy of light clusters,

and this method is recently extended to real-time rendering [130].

Computing shadows from many VPLs has been another related challenge. There are

solutions for real-time shadow computation from hundreds of lights [131, 132], but scenes

using VPLs for indirect illumination usually require thousands of VPLs or more. Tradition-

ally, shadows are computed for each of the VPLs, but this can be too expensive for real-time

rendering, unless combined with a subsampling technique. Harada et al. [133] proposed a

method for efficiently casting shadow rays to lights within each render tile, but it does

not solve the problem for virtual point lights with potentially global influence radius.

Imperfect shadow maps [134] use a point cloud representation of the scene geometry to

significantly reduce the shadow mapping cost at the expense of shadow quality.

Recently, the lighting grid hierarchy method [16] was introduced for rendering explo-

sions by representing their illumination using many virtual point lights. We extend this

method in this chapter by providing a GPU-friendly variant that is suitable for real-time

rendering with many lights, so we discuss this method in more detail below (Section 3.2.2).
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3.2.2 Lighting Grid Hierarchy

The lighting grid hierarchy method [16] provides an effective solution to the many-

lights problem, though it was originally introduced for rendering explosions with self-

illumination by representing the volumetric illumination data as many virtual point lights.

As opposed to alternative solutions to the many-lights problem, lighting grid hierarchy

provides a temporally stable computation. It also allows efficiently precomputing and

storing shadows for all lights, which leads to orders of magnitude faster computation

with volumetric shadows needed for rendering explosions. In this chapter we extend this

approach by providing an efficient parallel construction method, presenting a technique

for efficiently computing the lighting from the hierarchy on the GPU, and introducing

an importance sampling algorithm that avoids shadow precomputation, all of which are

crucial for achieving real-time frame rates.

The lighting grid hierarchy method represents the entire illumination from all lights

at multiple resolutions. Each level of the hierarchy corresponds to a different resolution

representation that approximates the original lights using fewer light sources. A level is

constructed by placing a volumetric grid that encapsulates the original lights. The vertices

of the grid approximate the lights around them, such that the contribution of each original

light is distributed to the eight neighboring grid vertices using trilinear weights. A grid

light is generated from each grid vertex with non-zero illumination and placed at the

illumination center of the original lights it represents. The highest resolution grid forms

level 1 with the set of light sources S1. Higher levels � of the hierarchy use grid cells

with twice the size in all dimensions as compared to the level � − 1 right below them.

The highest (coarsest) level �max typically has a single cell with 8 vertices, forming S�max .

Therefore, the number of levels constructed depends on the resolution of level 1. The

original lights are kept at level zero, forming S0.

For providing an efficient solution to the many-lights problem, a lighting grid hierar-

chy approximates the light coming from different distances using different levels of the

hierarchy, providing different resolution representation of the original lighting. This is

accomplished using blending functions that form a partition of unity for any distance from

the point where lighting is computed (Figure 3.2). These blending functions determine

the influence regions of the lights at each grid level and the incoming illumination from a
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Figure 3.2: The blending functions B0, B1, B2, and B3 of lighting grid hierarchy with
�max = 3, forming a partition of unity for any distance d from the point where lighting
is computed.

light is modulated by the corresponding blending function value. Let h� be the grid size

of level �. The non-zero regions of the blending functions are determined by distances

r� = αh�, where α is a user-defined parameter that determines the accuracy of the lighting

approximation. Larger α values lead to blending functions with larger non-zero regions

and result in using more grid lights for estimating lighting with higher accuracy.

3.3 Rendering with Many Lights
Our rendering algorithm uses the lighting grid hierarchy method [16] to efficiently

evaluate the illumination from a large number of point lights. In our experiments we

use this algorithm for computing indirect illumination with many virtual point lights

(VPLs) [32], though our lighting computation is independent from how the point lights

are generated.

We begin with constructing a lighting grid hierarchy from the given point lights on

the GPU (Section 3.3.1). We use this lighting grid hierarchy within a deferred renderer

for efficiently estimating the illumination from all lights (Section 3.3.2). While computing

the lighting, we stochastically pick a fixed number of shadow samples to be computed

via ray tracing on the GPU (Section 3.3.3). Finally, we filter the computed shadows to

eliminate the high-frequency sampling noise and use the result as shadow ratio estimators

for computing the final lighting approximation.

3.3.1 Lighting Grid Hierarchy Construction

The problem of constructing a lighting grid hierarchy is similar to the particle-to-grid

transfer operations used in hybrid Lagrangian-Eulerian simulation systems [135, 136].

Each level of the hierarchy can be constructed using either scatter [136] or gather [135]

operations. The scatter approach loops over each light and adds its illumination to the
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corresponding grid vertices. Since the parallel scatter loop involves atomic operations, it

can be highly inefficient for higher (coarser) levels of the hierarchy, as the small number

of target grid vertices at these levels lead to frequent thread contentions in atomic oper-

ations. The gather approach, on the other hand, loops over each grid vertex and finds

the corresponding lights that contribute to the vertex. This eliminates the need for atomic

operations, but requires search operations for finding the corresponding lights. This search

can be accelerated by a pre-ordering step [135], which can also be expensive to compute.

To provide an efficient parallel construction algorithm, we split the construction pro-

cess into two steps. In the first step we scatter the contributions of each input light to

the first grid level S1 with the highest resolution. Since this level involves a relatively

small percentage of thread contentions, the related atomic operations can be performed

efficiently. In the second step we build the rest of the levels using a gather approach. To

avoid an expensive pre-ordering step, we build these levels using the grid lights of the first

level S1, which are already ordered by construction.

This approach, as opposed to generating all levels directly from the input lights S0,

leads to some smoothing in the final lighting approximation from the lighting grid hierar-

chy, but provides a highly efficient mechanism for the parallel construction process. Since

VPLs are placed only on surfaces, a significant portion of the grid vertices in the volume

may contain no illumination, especially for the lower (finer) levels of the hierarchy. There-

fore, the construction process is completed by a stream compaction pass that is applied for

each level to remove the large percentage of unused grid vertices.

Since we use a bottom-up construction of the hierarchy by building S1, we must first

determine the size of the grid cells h1. We begin with computing the bounding box of all

input lights and set the grid size of the top level S�max , which only contains a single cell

(i.e., 8 grid lights), as the longest edge of this bounding box. The grid size for the first level

S1 is computed using h1 = h�max /2�max−1.

In our implementation the number of lighting grid hierarchy levels �max is controlled

by a user-specified parameter.
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3.3.2 Lighting Computation

If the lighting grid is densely populated, such that each grid vertex contains a light with

non-zero intensity, lights around a shaded point can be directly gathered from the grid.

However, the stream compaction pass we use for eliminating grid lights with zero inten-

sities prevents trivially finding the lights around shaded points from their grid locations.

Therefore, we use the lighting grid hierarchy within a deferred renderer for estimating the

illumination from all lights with a light rasterization step. After generating G-buffers for

the scene geometry, we rasterize the lights in the lighting grid hierarchy as (coarse) spheres

(approximated using cubes in practice) [137]. Since the blending function values for the

lights in the lighting grid hierarchy are zero beyond the distance 2r� from the light sources,

for each light we draw a sphere with 2r� radius. The exception is the 8 lights in the top

level of the hierarchy, which use blending functions that do not go to zero with increasing

distance, so these lights can be handled separately by drawing a screen-size quad. This

process produces fragments for each pixel that the lights can potentially illuminate with

a non-zero blending function value. Yet, the blending functions can still evaluate to zero

for some of these fragments, since each grid light at the higher levels of the hierarchy

has a minimum illumination radius r�/2 within which the blending function is zero (see

Figure 3.2). Therefore, we compute the blending function for each fragment and discard

the fragment if it is zero.

We perform the lighting computation for each fragment with a non-zero blending

function value and accumulate the result without considering shadows. Shadows are

computed separately, as explained below (Section 3.3.3).

3.3.3 Shadow Sampling

The lighting grid hierarchy allows estimating the illumination using a small subset of

all lights. Yet, in practice lighting computation of each pixel still involves hundreds of

lights with non-zero blending function values (especially with relatively large α parame-

ters) and computing shadows for each one of these lights can be prohibitively expensive for

real-time rendering. Even though the lighting grid hierarchy method allows precomputing

shadows (such as shadow maps) with reasonable memory usage, this precomputation

can easily become the bottleneck of the entire rendering process. Therefore, we instead
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stochastically estimate shadows using a fixed number of samples, which are computed via

ray tracing on the GPU. We pick these shadow samples during the lighting computation

(Section 3.3.2). The shadows computed from these samples are then used as shadow ratio

estimators [22].

We must pick the shadow samples randomly, independent of the order in which the

lights are processed, to avoid introducing bias in shadow sampling. Furthermore, this

random sampling should be performed independently for each pixel to avoid correlation

in sampling. This process requires considering the set of all lights that have non-zero

illumination contributions for each pixel. Moreover, since the illumination contributions of

each light in the lighting grid hierarchy can vary drastically, using an importance sampling

scheme is crucial for reducing the variance in sampling.

We pick a small number of shadow samples for each pixel during the lighting com-

putation, while rendering the lights as spheres (Section 3.3.2). These shadow samples are

evaluated after the lighting computation via tracing shadow rays on the GPU from the

pixel positions towards the selected shadow sample locations. The lighting grid hierarchy

we construct contains the variance of the illumination center for each light. We use these

variance values for randomly picking shadow sample positions to produce area shadows,

as opposed to using the illumination centers directly. Each one of the shadow samples

of a pixel is selected independently. Therefore, it is possible to have multiple shadow

samples of a pixel belonging to the same light source, though it is improbable in practice,

considering that each pixel is illuminated by hundreds of lights. Nonetheless, even if two

shadow samples of a pixel use the same light, they are likely to send shadow rays towards

slightly different directions.

Let fi be the probability density of picking the light source i for shadow sampling, such

that the probability of picking the light source is pi = fi/ ∑n
j fj, where n is the total number

of lights in the hierarchy. These fi values are determined per pixel based on the illumina-

tion contribution of each light for importance sampling, such that fi is non-zero if and only

if the light has non-zero illumination contribution (disregarding potential shadowing). We

use weighted reservoir sampling[121] to pick light samples with constant space. Dur-

ing lighting computation, we store a running total for the cumulative probability density

f̂i = ∑i
j f j for each pixel. For each fragment with a non-zero fi value, we decide whether
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to use it as a shadow sample stochastically with probability p̃i = fi/ f̂i, using the accumu-

lated probability density f̂i while rendering the light source i. This stochastic decision is

performed separately for each shadow sample of the pixel. If the light is selected as a

shadow sample, it overwrites the previously selected sample. Note that the first light of a

pixel with p̃1 = f1/ f̂1 = 1 is always selected as a shadow sample, though succeeding lights

can overwrite the shadow sample. At the end of the lighting computation, this process

provides k shadow samples each with the desired probability pi, where k is the number of

shadow samples per pixel, controlled as a user-defined parameter.

After the lighting computation, during which k shadow samples are picked, we trace

shadow rays on the GPU to determine a binary shadow value for each sample. The average

of the k samples provides the shadow value for the pixel, which can be used as a shadow

ratio estimator [22].

Stochastic shadow sampling, as explained above, leads to a substantial amount of noise

when using a small number of shadow samples. For eliminating the high-frequency noise

in shadow sampling a screen-space bilateral filter can be applied to the computed shadow

values before using them as shadow ratio estimators [22]. In our tests we use a wavelet-

based filter [138], which we found to be more effective for filtering the shadow noise of

VPLs used for computing diffuse-dominant global illumination.

3.4 Implementation and Results
We evaluate our method by computing indirect illumination with VPLs [32]. The

VPLs are generated by tracing light rays up to three diffuse bounces. When the lighting

condition changes, we regenerate all VPLs and construct a new lighting grid hierarchy. We

use the DirectX ray tracing API for both generating VPLs and computing shadow rays. All

performance results are generated using an NVIDIA RTX 2080 graphics card at 1280× 720

resolution.

3.4.1 Additional Optimizations

The process of picking the shadow samples (Section 3.3.3) involves atomic operations

for updating the running total for the cumulative probability density f̂i and overwriting

the shadow samples. However, in practice the impact of thread contentions during the
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lighting computation on the final result can be negligible. An exception is rendering to

very small viewports. In our tests we found that disabling thread locks produces virtually

identical results with 10–20% improvement in render times. Therefore, the results in this

chapter are generated without thread locks, unless otherwise indicated.

Note that each level of the lighting grid hierarchy encodes the entire illumination of

all input lights with a different resolution. Therefore, it is possible to skip using the

actual input lights altogether and begin the lighting computation using the first level of

the hierarchy S1 instead. This can significantly reduce the overdraw caused by rendering

spheres for each light source and accelerate the lighting computation, but it also introduces

some smoothing to the estimated illumination. Yet, in the case of using VPLs for com-

puting indirect illumination, this additional smoothing can even be preferable in practice.

Therefore, all results in this chapter are generated using the lighting grid hierarchy starting

from S1.

In addition, due to the large number of grid lights in S1 and their relatively small

illumination radii, skipping S1 grid lights for shadow sampling can significantly reduce

the memory bandwidth and computation time, without obvious impact on the render

quality. In our tests we observed an additional 10–15% speedup by skipping S1 for shadow

sampling with almost identical render results, as can be seen in Figure 3.3. Therefore, the

results in this chapter do not use S1 for shadow sampling, unless otherwise specified.

3.4.2 Lighting Grid Hierarchy Construction

Rendering begins with constructing a lighting grid hierarchy, which is reconstructed

every time the illumination changes and a new set of VPLs is generated. Table 3.1 com-

pares the computation time of parallel lighting grid hierarchy construction using scatter

(a) Sample shadows from S1

Render time: 32.5 ms
(b) Sample shadows from S2

Render time: 28.5 ms
(c) Difference ×8

Figure 3.3: Comparison of shadow sampling with and without using the lowest (finest)
level of the hierarchy S1, using 100K VPLs, 4 shadow samples, and α = 1.
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Table 3.1: Breakdown of the hierarchy construction time (100K VPLs in Crytek Sponza).

Scatter VPLs Gather from S1
Compute bounds 1.7 ms 1.7 ms

Compute S1 2.3 ms 2.3 ms
Compute S2 2.3 ms 1.0 ms
Compute S3 4.7 ms 1.0 ms
Compute S4 23 ms 2.0 ms
Compute S5 107 ms 1.0 ms
Compute S6 405 ms 1.1 ms
Compute S7 1,563 ms 1.5 ms

Merge levels 0.5 ms 0.5 ms
Total 2,110 ms 12.1 ms

operations on the input VPLs and our gather approach using S1 for computing the higher

levels of the hierarchy. The computation time of each step is listed in the table. The

first step computes the collective bounding box of the lights and the final step merges

the grid lights of all levels into a single buffer to avoid multiple draw calls during light

rasterization. Notice that our gather method is more than an order of magnitude faster

than the scatter approach. The first two (compute bounds and compute S1) and the last

(merge levels) operations are identical in both cases. The difference in performance comes

from the thread contentions of the scatter operations for computing the higher levels of

the hierarchy. In comparison, we can efficiently construct a lighting grid hierarchy by

generating higher levels from S1.

A qualitative comparison of lighting grid hierarchy construction methods is provided

in Figure 3.4. Notice that the two methods for parallel lighting grid hierarchy construction

produces similar results. Yet, an extra level of smoothing and light leakage can be observed

when using our gather operations from S1 (Figure 3.4b).

As one would expect, the lighting grid hierarchy construction time depends on the

number of VPLs. The total construction times for different numbers of VPLs can be seen in

Table 3.2, showing that the construction time using our gather approach grows sublinearly

with the increasing number of VPLs.

3.4.3 Rendering

Figure 3.1 shows an example image rendered using our method for computing global

illumination with VPLs. As expected, our method can produce high-quality global illu-
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(a) Scatter VPLs (b) Gather from S1
Figure 3.4: Lighting grid hierarchy construction methods using (a) scatter operations on
the input VPLs and (b) our gather operations using the first level S1 of the hierarchy,
producing similar results.

Table 3.2: Computation and render times with different numbers of VPLs. The timings are
generated using the camera angle in Figure 3.4.

Number of VPLs 1K 10K 100K 1M
VPL Generation 0.1 ms 0.2 ms 0.4 ms 2.5 ms
Hierarchy Construction 7.0 ms 9.2 ms 12.1 ms 32.0 ms
Render time (no shadow) 5.6 ms 8.1 ms 11.2 ms 16.0 ms
Render time (1 shadow/pixel) 10.1 ms 14.3 ms 18.4 ms 24.3 ms
Render time (4 shadows/pixel) 15.5 ms 22.4 ms 28.5 ms 37.0 ms

mination, since we can efficiently compute lighting from a large number of VPLs. The

performance and the quality of our results depends on the number of VPLs used, the

number of shadow samples per pixel, and the parameter α of the lighting grid hierarchy

method that determines the number of light samples used for estimating the illumination.

Obviously, using more VPLs leads to a better approximation of global illumination and

it also increases the render time. Since we do not directly use the VPLs in the lighting

computation, the performance of our results depend on the number of grid lights in the

higher levels of the hierarchy. In our tests we set the number of levels for the lighting

grid hierarchy according to the number of VPLs and we pick the largest number of levels,
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such that the number of lights in S1 is less than half of the number of VPLs. Thus, in our

test the number of lights in the hierarchy is roughly proportional to the number of VPLs.

However, as shown in Table 3.2, the render time does not linearly scale with the number

of VPLs and we achieve a sublinear growth in render time with increasing VPL count.

Table 3.2 also shows that using a single shadow sample per pixel is significantly cheaper

than 4. It is important to note that most of the extra cost of having additional shadow

samples is related to the process of picking shadow samples during lighting computation.

The actual shadow computation via tracing shadow rays is much faster in comparison.

The sublinear growth in render time with increasing VPL count can also be observed by

investigating the number of overdraws (i.e., the number of fragments generated per pixel)

during the lighting computation. Note that the lighting computation is the bottleneck

of our system and the actual computation is proportional to the number of fragments

generated. Figure 3.5 shows heatmaps indicating the number of overdraws per pixel

for different number of VPLs. Notice that the number of lights in the hierarchy grows

proportional to the number of VPLs, but overdraw grows approximately logarithmically

with the number of lights.

One way to reduce the number of overdraws is using interleaved sampling [139, 140,

141], which splits the frame buffer into a small number of tiles. The lights at each level

of the hierarchy are distributed evenly to each tile and each light is rasterized onto only

one of the tiles. Since the tiles have a much lower resolution than the combined frame

buffer, lights rendered onto a tile produces fewer fragments than rendering onto the en-

tire frame. The final image of the combined frame buffer is constructed during the final

compositing pass. By reducing overdraw in lighting computation, interleaved sampling

significantly improves the total render time, but also leads to additional smoothing in the

final illumination estimation.

Figure 3.6 shows a comparison of images generated with and without interleaved

sampling. Since indirect illumination is mostly smooth, the differences caused by the

additional smoothing of interleaved sampling are not easy to notice. Yet, there exists

some additional smoothing in indirect shadows, especially visible behind the draping

cloth shown in the insets.

Table 3.3 provides the break-down of computation time for all rendering operations
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1K VPLs
Render time: 15.5 ms

10K VPLs
Render time: 22.4 ms

100K VPLs
Render time: 28.5 ms

1M VPLs
Render time: 37.0 ms

Brute-force 1M
Render time: 15 min

1K grid lights
Avrg.Overdraw:

135

5K grid lights
Avrg.Overdraw:

190

28K grid lights
Avrg.Overdraw:

222

144K grid lights
Avrg.Overdraw:

254
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Figure 3.5: Heatmaps showing the number of overdraws per pixel during the lighting
computation for lighting grid hierarchies generated from different numbers of VPLs and a
log plot of number of grid lights used in lighting computation vs. average overdraw per
pixel, showing the logarithmic growth in average overdraw as compared to the increasing
number of lights. The first row shows the corresponding render results using our method
with 4 shadow samples per pixel and the brute-force reference generated by computing
shadows of each VPL.

(a) No interleaved sampling
Render time: 30.2 ms

(b) 2 × 2 interleaved sampling
Render time: 15.2 ms

(c) 4 × 4 interleaved sampling
Render time: 10.1 ms

Figure 3.6: Comparison of our method with and without interleaved sampling using 100K
VPLs, 4 shadow samples, and α = 1.

Table 3.3: Computation time of rendering operations. The timings are generated with 100K
VPLs, 4 shadow samples per pixel, and α = 1, using the camera angle in Figure 3.6. Thread
locks are used in lighting computation for only 4 × 4 interleaved sampling to prevent race
conditions, which can be prominent in this case. The total render times do not include 0.4
ms used for generating VPLs and 12.1 ms used for constructing the lighting grid hierarchy.

Interleaved sampling not used 2 × 2 4 × 4
G-buffer generation 1.1 ms 3.5% 1.1 ms 7.0% 1.0 ms 5.9%
Lighting computation 24.8 ms 82.1% 9.0 ms 59.4% 3.8 ms 25.5%
Shadow ray tracing 2.3 ms 7.7% 2.2 ms 14.5% 2.2 ms 28.9%
Shadow filtering 1.9 ms 6.3% 2.8 ms 18.4% 2.9 ms 37.4%
Final compositing 0.1 ms 0.4% 0.1 ms 0.8% 0.1 ms 2.3%
Total render time 30.2 ms 15.2 ms 10.1 ms
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with and without interleaved sampling. Notice that without interleaved sampling lighting

computation takes most of the rendering time (82.1% in this example). Using interleaved

sampling with 2 × 2 and 4 × 4 significantly reduces the lighting computation time. For

dynamic scenes where the lighting condition or scene geometry constantly changes, the

cost of VPL generation and lighting grid hierarchy also need to be taken account into the

total render cost.

Importance sampling for shadow computation is a crucial component of our method.

Figures 3.7 and 3.8 compare the results of indirect shadows before and after filtering,

computed with and without importance sampling. Notice that shadows are extremely

noisy without importance sampling and the filtered shadows still contain a substantial

amount of lower-frequency noise even with 4 shadow samples per pixel. In comparison,

we achieve superior results with a single shadow sample per pixel using importance sam-

pling. Our shadows are further improved using more samples.

The lighting grid hierarchy method with smaller α values produces a smoother lighting

approximation by considering fewer lights for each lighting computation. A comparison

with two different α values is shown in Figure 3.9. Since indirect illumination is mostly
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Figure 3.7: Shadowed indirect illumination without shadow filtering, generated with and
without importance sampling using 1 and 4 shadow samples per pixel.
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Figure 3.8: Shadowed indirect illumination with shadow filtering, generated with and
without importance sampling using 1 and 4 shadow samples per pixel.

(a) α = 1 (Render time: 31 ms) (b) α = 2 (Render time: 93 ms)
Figure 3.9: While the accuracy of the lighting approximation improves with increasing α
parameter of lighting grid hierarchy, the quality improvement in indirect illumination can
be difficult to see.

smooth, the differences between the two alpha values are difficult to notice. On the other

hand, doubling the alpha value triples the render time for this example.

Global illumination computation with a large number of VPLs produces high-quality

results and our approach, especially when combined with interleaved sampling, provides

the necessary performance for achieving real-time frame rates. We compare the results of

our method to the NVIDIA VXGI implementation of voxel cone tracing [51] and path trac-

ing [122] in Figure 3.10. Notice that using our method we can produce a reasonably close



30

(a) VXGI
Render time: 21 ms

(b) 4 × 4 interleaved samp.
Render time: 15 ms

(c) No interleaved samp.
Render time: 93 ms

(d) Path Tracing Reference
Render time: 2 hours

Figure 3.10: Comparison of global illumination computation using (a) voxel cone tracing
generated with the highest quality settings in NVIDIA VXGI 2.0, (b) our method with 4× 4
interleaved sampling and α = 1.5, (c) our method with no interleaved sampling and α = 2,
and (d) path tracing reference. The given render times for VXGI and our method do not
include construction time. 100K VPLs are used for generating our results.

solution to the path tracing reference at interactive frame rates (Figure 3.10c). Using inter-

leaved sampling with our method (Figure 3.10b) introduces additional smoothing in light-

ing approximation, but provides a highly efficient solution to real-time global illumination

computation. Notice that the indirect shadows (e.g., behind the draping cloth and on the

columns) are properly reproduced using our method, but with some extra smoothing as

compared to the path tracing reference. In comparison to VXGI (Figure 3.10a), we achieve

closer results to the path tracing reference with relatively less smoothing introduced to the

indirect illumination estimation.

Although further reducing the render time, ignoring shadows for indirect lighting can

produce unrealistic results, which is more pronounced in brightly lit scenes. Figure 3.11

shows different scenes rendered using our algorithm and compares our method with 1

and 4 shadows samples per pixel to direct illumination only and indirect illumination

without shadows. Notice that without indirect shadows the resulting indirect illumination

is overestimated and it becomes relatively flat.

While the lighting grid hierarchy method provides a temporally stable solution to

rendering with many lights, it does not eliminate any underlying flickering of VPLs. In dy-

namic scenes, where the direct illumination (and/or scene geometry) changes, we regener-

ate all VPLs independently at each frame. Since VPL positions are distributed randomly in

the scene, the resulting VPL distribution is not temporally stable, even if the scene is static.

Therefore, if all VPLs are regenerated at every frame, the resulting indirect illumination es-

timation may include substantial amount of flickering, regardless of which method is used

for computing the illumination from the VPLs. One solution is incorporating methods that
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Direct Illumination No Indirect Shadows 1 Shadow Sample 4 Shadow Samples

Render time: 1.2 ms Render time: 11.2 ms Render time: 18.4 ms Render time: 28.5 ms

Render time: 2.5 ms Render time: 9.6 ms Render time: 15.9 ms Render time: 27.4 ms

Render time: 3.5 ms Render time: 10.9 ms Render time: 19.0 ms Render time: 31.6 ms

Render time: 16.1 ms Render time: 28.0 ms Render time: 36.8 ms Render time: 45.6 ms
Figure 3.11: Comparison of rendering time using different scenes and different settings.
All scenes are rendered using lighting grid hierarchy generated from 100k VPLs, with no
interleaved sampling and α = 1. The reported render times do not include VPL generation
and lighting grid hierarchy construction. Models downloaded from Morgan McGuire’s
Computer Graphics Archive [1].

re-use VPLs to minimize flickering [142]. Alternatively, applying a temporal anti-aliasing

(TAA) filter only to the indirect illumination can substantially reduce the flickering, but

can also introduce ghosting artifacts. The solution we prefer is applying TAA only to the

indirect shadows, which reduces flickering without noticeable ghosting artifacts.

3.5 Discussion and Conclusion
We have introduced an extension of the lighting grid hierarchy method that makes it

suitable for real-time rendering with many lights. We have also shown how our method

can be used for efficiently computing high-quality global illumination at real-time frame

rates. Our method can handle dynamic scenes, including dynamic lighting.

One important issue with all efficient solutions to the many-lights problem is that light

leakage is unavoidable. This is certainly the case with the lighting grid hierarchy method
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and our parallel construction approach that uses S1 for generating the higher levels of the

hierarchy leads to additional light leakage.

Moreover, unless a relatively large α value is used, lighting grid hierarchy can introduce

some smoothing to the illumination estimation. Our shadow computation with a small

number of shadow samples introduces an additional level of smoothing due to shadow

filtering. When combined with interleaved sampling, the smoothing of our lighting esti-

mation is further amplified.

Nonetheless, our method provides an effective solution to the many-lights problem for

real-time rendering.

Note that, regardless of whether VPLs are completely or partially regenerated at every

frame, the lighting grid hierarchy must be reconstructed when there is any change to the

VPL data. This construction introduces computation cost beyond rendering for dynamic

scenes. An interesting future direction would be exploring dynamic updates to previously

constructed lighting grid hierarchy that could reduce the initialization cost for dynamic

scenes.



CHAPTER 4

REAL-TIME STOCHASTIC LIGHTCUTS1

In this chapter, we present real-time stochastic lightcuts, a real-time rendering method

for scenes with many dynamic lights. Our method is the GPU extension of stochastic light-

cuts [4], a state-of-art hierarchical light sampling algorithm for offline rendering. To sup-

port arbitrary dynamic scenes, we introduce an extremely fast light tree builder. To max-

imize the performance of light sampling on the GPU, we introduce cut sharing, a way to

reuse adaptive sampling information in light trees in neighboring pixels. 1

4.1 Introduction
Scenes with many lights are commonplace in real-time rendering applications like

video games. Yet, handling many lights has been a challenge in real-time rendering,

due to the complexity of accumulating illumination from all lights for all pixels. Most

game engines handle scenes with many lights using a mixture of baking and tile-based

deferred rendering [128, 126] to determine which pixels should be illuminated by which

lights. However, baked lighting is difficult to use with animations and tile-based deferred

rendering only works if the lights have relatively small influence ranges (though stochastic

ranges can be used for lights with unbounded influence ranges [127] to approximate the

lighting). Recent Monte Carlo sampling methods for real-time rendering [42, 3] lift these

limitations, but their computation cost limits the number of light samples that can be used

at real-time frame rates, resulting in noisy lighting estimations.

We present an extension of stochastic lightcuts [4] and describe how it can be used to

achieve high-performance rendering with many lights on the GPU (Figure 4.1). Our goal

is to minimize the overhead of sampling from a light tree, so that we can afford more light

samples within the same render time, achieving higher quality (i.e., lower noise). Thus,

1D. Lin and C. Yuksel, “Real-time stochastic lightcuts,” Proceedings of the ACM in Computer Graphics and
Interactive Techniques (Proceedings of I3D 2020), vol. 3, no. 1, pp. 5:1–5:18, 2020.
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Figure 4.1: Our real-time stochastic lightcuts method renders a scene with unbiased
sampling of direct lighting from 24,782 emissive triangles with a sampling time of 11.5
ms (including tracing shadow ray and lighting computation) and a total frame time of 23
ms on a NVIDIA RTX 2080 card, using 4 light samples per pixel. The screen resolution is
1920 × 1080. SVGF [2] and TAA are applied to filter the sampling result.

we accept sacrificing the quality of the light tree to save computation time, which can be

used towards more light samples, resulting in a net gain in quality. To achieve this, we use

a perfect (i.e., balanced, full, and complete) binary light tree. A perfect binary tree allows

extremely fast construction and also boosts the light sampling performance. Moreover, we

introduce a novel weight computation scheme for hierarchical importance sampling that

provides improvements in sampling quality in our test scenes. Furthermore, we introduce

cut sharing, which allows a block of pixels to share the same cut through the light tree for

minimizing the overhead of cut selection. We show how cut sharing enables the use of

interleaved sampling [141] to further improve the performance or light sampling quality.

We compare our real-time stochastic lightcuts method with prior work on sampling many

lights and show that our method improves the speed of light sampling, thereby providing

higher quality with more light samples within the same render time budget.

4.2 Background: Stochastic Lightcuts
In this section we briefly summarize stochastic lightcuts [4]. An introduction of light-

cuts [26] and many light rendering techniques can be found in Chapter 2.

Stochastic lightcuts [4] extends the lightcuts method [26]. Lightcuts builds a binary

light tree prior to rendering. During rendering the light tree is evaluated from top to

bottom for selecting a cut through the light tree. The cut is initially placed at the root



35

node. For each node of the light tree along the cut, if the maximum possible illumination

from the subtree under the node is above a threshold, the cut is moved one level below.

Stochastic lightcuts [4] uses a hierarchical importance sampling technique (similar to [41])

for randomly selecting a light sample within each subtree under the chosen cut, converting

lightcuts to an unbiased light sampling method. For each light tree node above the cut,

hierarchical importance sampling traverses the subtree below the node from top to bottom,

randomly picking one of the child nodes under each node, down to a leaf node that

contains a single light source, which is chosen as the light sample.

4.3 Real-Time Stochastic Lightcuts
Our real-time stochastic lightcuts method contains two key components that make it

GPU friendly. First, we use a perfect binary light tree, which is extremely fast to build

(Section 4.3.1) and efficient to traverse (Section 4.3.2). Second, we share cuts within k × k

pixel blocks (Section 4.3.3), instead of computing a cut for each pixel during light sampling.

Our cut sharing technique naturally enables interleaved sampling (Section 4.3.4), which

can be used for further accelerating light sampling or improving its quality.

Our goal is to minimize the light tree construction and light sample selection times.

The choices we make for achieving this goal, however, may adversely affect the quality

of the tree and the light sample distribution. Yet, this reduction in sampling quality can

be offset by using more light samples. Thus, our ultimate goal is using the time we save

during the tree construction and light sample selection towards more light samples for a

better illumination estimation.

4.3.1 Perfectly Balanced Light Tree

As mentioned above, neither the existing agglomerative or divisive light clustering

methods are fast enough to fully rebuild the light tree in real-time. To solve this problem,

we use a perfect (i.e., balanced, complete, and full) binary light tree. In a perfect tree, all

leaf nodes that contain the individual light sources appear at the bottom level of the tree.

Since the number of leaf nodes in a perfect tree must be a power of two, we add bogus lights

as needed (Figure 4.2).

Each node in the light tree stores the bounding box of the underlying lights and the total
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Level 0

Level 2

Level 1

Level 3

Figure 4.2: An example of a perfectly balanced light tree with four levels. Bogus lights
with zero intensities are appended to the end of the leaf level (level 3) to round up the
number of lights to the nearest greater power of two. Bogus lights and bogus nodes are
marked with gray color.

light intensity. Since we use a perfect tree, there is no need to store child node pointers, as

the child node indices can be computed directly from the parent node index. Additionally,

each leaf node stores the corresponding light ID. Note that light IDs cannot be directly

computed from leaf node indices in dynamic scenes, since the leaf index of a light can vary

each frame.

For minimizing the construction time, our builder sorts the light sources based on

the Morton code of their positions (conceptually similar to a Morton code BVH builder

[143]). The leaf nodes are generated by directly copying the light information in the sorted

order into the leaf nodes of the tree. Afterwards, computing the internal node data is

a straightforward gathering process in a bottom-up order. For each internal node, the

bounding boxes and intensities of the child nodes are simply added together. Bogus lights

are assigned zero intensities and excluded from the bounding box computation. Since this

gathering process is fully deterministic and commutative, we can generate level � from any

level �s below it, such that �s > �, not necessarily the level immediately below it (where

�s = �+ 1). This means that any combination of levels can be generated in parallel, and

the construction process can be parallelized in a way that fully exploits the capability of

the GPU.

While our perfectly balanced light tree is fast enough to be rebuilt for every frame,

we also provide an option to use a two-level light tree, where a light tree is split into one

top-level and multiple bottom-levels. This is to improve the quality of light sampling for
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scenes with sparsely distributed light meshes of heterogeneous sizes, where Morton code

sorting on all lights might not reproduce the spatial proximity very well. In a two-level

light tree, each bottom-level is built separately as a perfect binary light tree. After all

bottom-levels are built, they are used as leaf nodes of the top-level tree, which is also built

as a perfect binary tree. Notice that in this case the combined light tree as a whole is not

necessarily a perfect tree. Furthermore, two level tree introduces complexity in light tree

traversal, but it can improve the sampling quality. An additional benefit of a two-level

light tree is that it allows instancing.

4.3.2 Light Tree Traversal

During rendering, we first select a cut through the light tree, similar to the original

lightcuts method [26]. Yet, unlike lightcuts, we cannot afford to pick a cut with hundreds

of nodes, which would result in too many light samples to achieve real-time performance.

Instead, we pick a cut with a relatively small, user-defined number of nodes. Therefore, cut

selection is not performed until convergence with a given error threshold. In fact, given

a small number of nodes for the cut, it is almost guaranteed that we can never satisfy a

reasonable error threshold. Thus, we do not use an error threshold parameter and our cut

selection terminates until a user-defined number of nodes (i.e., subtrees) are selected.

Given any subtree root, it is easy to select a light sample by traversing our perfect

light tree down to a leaf node. We use the hierarchical importance sampling approach of

stochastic lightcuts [4]. At each internal node, one of its child nodes is randomly selected

based on their weights computed at the shaded point. To improve the sampling quality in

our test scenes, we introduce a novel weight computation scheme for hierarchical impor-

tance sampling.

Ideally, the weights should be proportional to the expected illuminations of the child

nodes. However, when the shaded point is inside the bounding box of a node, its expected

illumination goes to infinity. Yuksel [4] solves this problem by effectively ignoring the

distance term when the shaded point is too close to either one of the child node bounding

boxes. We use a different strategy. Since the expected illumination can go to infinity, we

approximate the expected weights by computing two weights at two different distances

from the shaded point: the closest distance dmin
j and the farthest distance dmax

j within the
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bounding box of the child node j, such that

wmin
j =

Fj(�x, �ω)
∥∥∥�Ij

∥∥∥
(

dmin
j (�x)

)2 wmax
j =

Fj(�x, �ω)
∥∥∥�Ij

∥∥∥
(

dmax
j (�x)

)2 , (4.1)

where �x is the shaded point, Fj(�x, �ω) is the reflectance bound, and �Ij is the total light

intensity within the node. Note that when the child node bounding boxes are relatively

small and far from the shaded point, wmin
j and wmax

j approach to the same values. Given

two child nodes j and k, we compute two probabilities for picking j as

pmin
j =

wmin
j

wmin
j + wmin

k
pmax

j =
wmax

j

wmax
j + wmax

k
. (4.2)

We use the average of these two pj = (pmin
j + pmax

j )/2 as the probability of picking child

node j. The only singularity with this approach is when both dmin
j and dmin

k are zero (i.e

�x is within the bounding box of both child nodes), in which case we ignore the distance

terms for computing wmin
j and wmin

k . In our tests, we have found that this new weight

computation scheme can improve the quality of light sampling.

Note that a bogus node (or a bogus light) has zero probability to be selected due to its

zero intensity. When a dead branch is detected, we simply return a light with zero intensity.

The intensity of the selected light is divided by the selection probability, and shadows are

computed via ray tracing on the GPU.

4.3.3 Light Sampling with Cut Sharing

Cut selection of lightcuts performed independently for each pixel can be expensive.

Yet, neighboring pixels often share the same cuts. This is particularly the case when the

number of light samples (i.e., the number of nodes above the cut) is small. Based on

this observation, we can accelerate cut selection by performing it for a group of pixels,

rather than independently for each pixel. Thus, a group of nearby pixels share the same

cut through the light tree. We call this cut sharing. Note that cut sharing does not cause

sampling correlation, since pixels within a group are still free to pick different light samples

using the same cut.

Cut sharing can be broken down into two passes. First, a cut computation pass is

executed once for each k × k pixel block where one of the pixels is randomly selected as

the representative pixel whose geometric and material properties are used to select the cut.
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In the second pass, we perform light sampling, such that each pixel in the k × k block uses

the same cut.

Cut sharing accelerates light sampling with a smaller additional memory footprint for

storing the cut. Notice that our cut sharing method bears some resemblance to Adaptive

Direct Illumination Sampling [38], where a cut is shared by each scene cell in a 3D grid.

In comparison, our screen-space cut sharing enables efficient GPU implementation and

screen-space subsampling as explained below.

4.3.4 Interleaved Sampling

Since the cut sharing technique partitions all scene lights into disjoint light clusters (i.e.,

light subtrees under the cut) for every k × k pixel block, interleaved sampling of many

lights [140, 141] can be naturally used here, such that each pixel in an m × m subblock only

samples from a subset of all light clusters, where m ≤ k and k is a multiple of m. Note that,

though we use square blocks and subblocks, they can be rectangular as well. The lighting

contribution from the lights within a subblock is later shared with the neighboring pixels

in a reconstruction process.

Interleaved sampling [140, 141] partitions all light sources into m2 subsets. Each subset

is assigned to one pixel within a block of m × m pixels. The lighting for each pixel is

computed using its subset, reducing the number of light sources used per pixel by 1/m2.

After computing lighting, a blurring kernel filters the irradiance buffer to remove the

structured noise artifacts, using a discontinuity buffer to avoid blurring across geometric

edges.

In our method, we instead partition the light subtrees under the chosen cut. Each pixel

within a subblock of m × m pixels receives a subset of the light subtrees and samples only

those subtrees. Note that both interleaved sampling (using a subset of the light subtrees)

and light sampling (randomly picking lights within each subtree) lead to noise in lighting

estimation. Therefore, a simple blurring kernel (like a Gaussian filter used in prior work)

may not be sufficient to clear the noise. Instead a geometry-aware denoiser, like SVGF

[2], can be applied using more aggressive parameters (such as more blending passes) than

typical settings used without interleaved sampling.

The benefit of interleaved sampling is that it can effectively increase the number of light
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clusters (i.e., the number of nodes along the cut) for a local pixel neighborhood without

increasing the number of light samples per pixel. This way, we can process a deeper cut,

which often leads to higher quality. Furthermore, deeper cuts would also mean fewer

steps needed for hierarchical importance sampling to reach a leaf node, which improves

the sampling performance.

4.4 Implementation Details
For generating our perfect light tree (or a bottom-level tree when using a two-level

light tree), we first sort all light primitives (points or triangles) based on their centroid

positions, using a 30-bit Morton code with 10 bits for each of the x, y, and z coordinates.

The centroid positions are quantized using the bounding box of all light sources in the tree

(i.e., the global light bounds). We use parallel bitonic sort [144] on 64-bit key-value pairs to

produce a sorted index list. This sorted index list is used to populate the leaf level. In our

implementation we limit the maximum number of light primitives in each leaf node to 1.

After generating the leaf level, we generate the internal levels in groups. All levels in a

group are built in parallel. Given source level �s, and d destination levels �s + 1 to �s + d,

each destination level is built directly from the source level �s. Thus, each destination node

at level � is formed by merging 2�−�s source nodes.

In our implementation, the nodes of perfect binary trees do not store light orientation

bounding cones. While this overestimates the geometry term used for computing cluster

error bounds and sampling weights, we observed only subtle loss of sampling quality in

our tests. On the other hand, skipping the cone storage allows us to pack the entire data

per light tree node into 32 bytes and helps to align the light tree levels to 64-byte cache

lines.

For cut sharing, we use k = 8 as the block size for a balance between speed and quality.

In our test, we have observed that using a block size smaller than 8 introduced a significant

overhead, resulting in slower rendering than not using cut sharing. On the other hand,

using a larger block size than 8 rapidly increased the MSE with only minor improvement

in sampling time (Figure 4.3). With a block size of 8, the interleaved sampling subblock

size m can be chosen as 2, 4, or 8.

Using n light samples per pixel, we pick a cut with n subtrees shared by an entire block.
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Figure 4.3: The relationship between cut sharing block size k and sampling time (blue line)
and MSE (orange line), generated using the Arnold Building scene. The values are relative
to the sampling time and MSE of the image rendered without cut sharing (lower is better).

Our interleaved sampling implementation distributes the n subtrees to the pixels within

a subblock as evenly as possible. Each pixel with index p within an m × m subblock (i.e.,

p ∈ {0, 1, ...m2 − 1}) uses the subtrees tp through tp+1 − 1, where tp ∈ {0, 1, ...n − 1}, such

that

tp =
⌊ pn

m2

⌋
. (4.3)

In our implementation, we also rotate the light cluster assignment of pixels within a sub-

block, so that the same pixel does not get the same clusters every frame. This allows

achieving better quality with spatiotemporal filtering. At each frame f , each pixel i within

a subblock is assigned an index of p = i + f (mod m2).

4.5 Results
We present test results in different scenes with many lights. Our results do not include

interleaved sampling (Section 4.3.4), unless otherwise stated. We compute the flux of

textured emitters using the method introduced by Moreau and Clarberg [42]. All scenes

but Lumberyard Bistro use a one-level light tree. The Amazon Lumberyard Bistro scene uses

a two-level light tree mentioned in Section 4.3.1 to improve the sampling quality since the

mesh lights have more irregular shapes than other scenes. All scenes only evaluate direct

lighting from the light sources or virtual lights. Direct lighting samples are only generated

by sampling the lights, without multiple importance sampling. All random numbers

used for sampling are generated using the GPU Tiny Encryption Algorithm [145]. The

results are rendered at 1920 × 1080 resolution using an NVIDIA RTX 2080 graphics card
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on a computer with an Intel Core i7-8700K CPU and 16GB RAM. We implemented our

algorithm using the Direct3D 12 graphics API with DirectX Raytracing (DXR) capability.

All timings are averaged over 512 frames.

4.5.1 Light Tree Construction

We present the breakdown of light tree construction time in Table 4.1 using two scenes.

In the Crytek Sponza scene, we generate approximately 100,000 virtual point lights from a

single sun (point) light by periodically varying the sun angle via ray tracing in every frame.

The Cornell Box scene includes 12 animated mesh lights with 12,146 emissive triangles. The

bounding box of all lights is first computed using parallel reduction. Notice that sorting is

the bottleneck of our light tree construction.

Our light tree construction on the GPU is more than two orders of magnitude faster

than the agglomerative clustering on the CPU that produces an unbalanced tree. Agglom-

erative clustering takes 251 ms for Crytek Sponza and 22 ms for Cornell Box on CPU, while

our tree construction takes only 0.43 ms and 0.15 ms on the GPU, respectively.

Note that it is possible to construct an unbalanced light tree using divisive cluster-

ing [146], which splits nodes by spatial median in a top-down order. Divisive cluster-

ing is faster than agglomerative clustering and more suitable for a GPU implementation.

Nonetheless, divisive clustering is not expected to produce a light tree with higher quality

that would lead to lower noise in light sampling, as compared to agglomerative clustering.

Also, since it would produce an unbalanced tree, it would not have the sampling efficiency

of our perfect trees, even it could be optimized to achieve construction speeds closer to

ours.

Table 4.1: Breakdown of the light tree construction time.

Crytek Sponza Cornell Box
Geometry update N/A 0% 0.01 ms 6%
Compute bounds 0.03 ms 7% 0.02 ms 10%
Morton code generation 0.01 ms 3% 0.01 ms 4%
Sorting 0.28 ms 63% 0.07 ms 45%
Building the leaf level 0.03 ms 8% 0.01 ms 5%
Building internal levels 0.08 ms 19% 0.05 ms 29%
Total Time 0.43 ms 100% 0.15 ms 100%
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4.5.2 Comparison to Prior Work

We compare our method to a real-time implementation of adaptive tree splitting (ATS)

[3]. The light BVH for ATS is built and updated on the CPU using surface area orientation

heuristic. Our method uses a single-level perfect light tree, which is rebuilt every frame on

the GPU.

One advantage of our method is that by improving the efficiency of light sampling,

we can use more light samples. This is demonstrated in the example in Figure 4.4. Using

(approximately) the same light sampling time (excluding the light tree construction time)

in this scene, our method can process 11 light samples during the time it takes for ATS to

process 5 light samples per pixel. As a result, the noise (prior to filtering) is substantially

less with our method.

Another example comparing our method to ATS for equal sampling time (excluding

light tree construction time) is shown in Figure 4.5. Again, our method is able to process

more light samples within the same sampling time, resulting in lower noise. Figure 4.6

shows a close-up of the same scene before and after filtering. Notice that the noise with

ATS is not entirely eliminated after filtering and presents itself as lower-frequency noise.

The comparison results are summarized in Table 4.2, along with ATS results using equal

sample count. Notice that for the Crytek Sponza scene the light tree update time for ATS

(a) ATS (5 spp)
21.9 ms

(b) Ours (11 spp)
22.1 ms

(c) Reference
5 min

Figure 4.4: Equal sampling time (excluding construction time) comparison between (a) a
real-time implementation of Adaptive Tree Splitting (ATS) [3] and (b) our method, using a
dynamic lighting condition with 100,000 VPLs in the Crytek Sponza scene.
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(a) ATS (4 spp)
18.4 ms

(b) Ours (13 spp)
18.1 ms

(c) Reference
4 min

Figure 4.5: Equal sampling time (excluding light tree construction time) comparison
between (a) a real-time implementation of Adaptive Tree Splitting (ATS) [3] and (b) our
method, with dynamic illumination in the Cornell Box scene.

(a) ATS (unfiltered) (b) Ours (unfiltered)

(c) ATS (filtered) (d) Ours (filtered)
Figure 4.6: Equal sampling time (≈18 ms) comparison between (a) a real-time implemen-
tation of Adaptive Tree Splitting (ATS) [3] and (b) our method in the Cornell Box scene.
(c-d) the bottom row shows the results after filtering with SVGF (α = 0.2) [2]. Noise
on the lower part of the torus in the filtered ATS result is apparent even after temporal
accumulation of samples.
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Table 4.2: Comparison to real-time Adaptive Tree Splitting (ATS).

Light Tree Sampling Sample Average Average
Update Time Count MSE SSIM

ATS CPU: 176.6 ms 21.9 ms 5 0.090 0.223
ATS CPU: 176.6 ms 48.1 ms 11 0.058 0.277
Ours GPU: 0.4 ms 22.1 ms 11 0.064 0.254
ATS CPU: 0.6 ms 18.4 ms 4 0.084 0.168
ATS CPU: 0.6 ms 58.9 ms 13 0.033 0.222
Ours GPU: 0.2 ms 18.1 ms 13 0.040 0.200

on the CPU is orders of magnitude slower than our light tree construction on the GPU.

For the Cornell Box scene, on the other hand, we use a two-level light tree with ATS and

only the small top-level tree is updated every frame and the bottom-level trees (one for

each mesh light) remain constant, significantly reducing the light tree update time of ATS.

In comparison, our light tree construction still works multiple times faster, even though

it rebuilds an entire (single-level) light tree for every frame from scratch on the GPU. The

table also includes mean square error (MSE) and structural similarity index (SSIM) values.

Note that the tree quality of ATS allows it to achieve lower noise (i.e., lower MSE and

SSIM). This advantage of ATS is due to the fact that we use a perfect tree that delivers

lower sampling quality. On the other hand, ATS requires substantially longer sampling

time to process as many samples as our method.

4.5.3 Evaluation of Light Sampling Strategies

In Figures 4.7 and 4.8 we present (approximately) equal sampling time comparisons of

our real-time stochastic lightcuts method to two alternatives: uniform random sampling

without a light tree and sampling directly from a light tree with no cuts (i.e., without

selecting a cut). Sampling with no cuts uses hierarchical importance sampling, starting

from the root of the tree for each light sample, using our weight computation scheme.

Note that directly sampling a light tree is the approach used in some recent work [42, 3].

In comparison, our method uses stochastic lightcuts with cut sharing; thus, hierarchical

importance sampling traverses the selected subtrees. In these figures we also use two

alternatives for light trees: unbalanced tree generated using agglomerative clustering on

the CPU and perfect tree generated using our method on the GPU. The nodes of the un-

balanced trees contain orientation bounding cones and child index offsets, which provide
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Perfect Tree + Filtered Random Unbalanced Tree Perfect Tree
Real-time Stochastic Lightcuts Sampling No Cuts Lightcuts No Cuts Lightcuts Reference

Crytek Sponza Build Time: - - - CPU: 251 ms CPU: 251 ms GPU: 0.4 ms GPU: 0.4 ms
261,798 triangles Sampling Time: 31.3 ms 29.4 ms 29.1 ms 29.3 ms 29.7 ms
100,000 virtual point lights Light Samples: 12 6 9 7 17

MSE: 0.108 0.098 0.078 0.097 0.050
SSIM: 0.181 0.194 0.222 0.195 0.285

Cornell Box Build Time: - - - CPU: 22.4 ms CPU: 22.4 ms GPU: 0.2 ms GPU: 0.2 ms
12,156 triangles Sampling Time: 29.9 ms 29.4 ms 30.8 ms 30.4 ms 30.5 ms
12,146 triangle lights Light Samples: 30 9 14 16 23

MSE: 0.055 0.048 0.028 0.036 0.023
SSIM: 0.181 0.178 0.217 0.193 0.238

d

Arnold Buildings Build Time: - - - CPU: 8.1 ms CPU: 8.1 ms GPU: 0.1 ms GPU: 0.1 ms
94,206 triangles Sampling Time: 30.4 ms 30.4 ms 29.6 ms 30.7 ms 30.2 ms
4,596 triangle lights Light Samples: 35 12 17 19 29

MSE: 0.046 0.021 0.011 0.033 0.019
SSIM: 0.439 0.484 0.534 0.457 0.503

Figure 4.7: Visual and quantitative comparison of light sampling methods with (ap-
proximately) equal sampling time. The unbalanced trees are built on the CPU using
agglomerative clustering and perfect trees are build using our method on the GPU.

Two-Level Perfect Trees + Filtered Random Unbalanced Tree Two-Level Perfect Trees
Real-time Stochastic Lightcuts Sampling No Cuts Lightcuts No Cuts Lightcuts Reference

Lumberyard Bistro Build Time: - - - CPU: 44.4 ms CPU: 44.4 ms GPU: 3.2 ms GPU: 3.2 ms
2,837,137 triangles Sampling Time: 29.5 ms 30.7 ms 30.0 ms 29.2 ms 30.7 ms
200 mesh lights Light Samples: 13 6 9 8 16
24,782 emissive triangles MSE: 0.033 0.025 0.023 0.028 0.022

SSIM: 0.160 0.210 0.222 0.194 0.235

Figure 4.8: Comparison of methods using a similar setup as Figure 4.7.
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better sampling quality but some reduction in sampling speed (in addition to the extended

build time). The examples in Figure 4.7 use single-level perfect trees and the example in

Figure 4.8 uses a two-level perfect tree (the bottom-level perfect trees are built on the CPU

in our implementation). The reference images are generated using stochastic lightcuts

results with 65,536 total samples per pixel.

Notice that in all four scenes the highest light sample count is achieved by either our

stochastic lightcuts method with perfect tree or random sampling. While uniform random

sampling cannot effectively make use of the relatively high sample count, our method

leads to a relatively low noise solution. The only exception is the Arnold Buildings scene,

where the quality improvement of using an unbalanced tree makes a significant-enough

improvement, so that our stochastic lightcuts method with an unbalanced tree provides

the best quality, even by using fewer light samples than our method with a perfect light

tree. This shows the performance gain of using a perfect light tree may not always offset

the potential reduction in the tree quality. However, this comparison does not include the

substantially longer build time of the unbalanced tree. Notice that our method benefits

from the fast sampling speed which allows it to use 1.4× - 2.8× more samples than other

methods. On the other hand, methods based on unbalanced light trees have prohibitively

expensive built time (8.1 ms - 251.0 ms) which makes them impractical to use for fully

dynamic scenes.

We provide numerical comparisons using equal sample count (8 light samples per

pixel) in Table 4.3, showing total frame render time, sampling time (including cut selec-

tion), mean square error (MSE), and structural similarity index (SSIM). Notice that our

method with a perfect tree is faster in both total frame time and sampling time than all

alternatives, except for random sampling. In fact, our method delivers a higher sampling

speed than random sampling in the Crytek Sponza scene, which is likely due to more

coherent shadow rays. However, the quality improvement over random sampling (as can

be seen by the MSE and SSIM numbers) is substantial, as expected.

Also notice that, using 8 light samples per pixel, there is little numerical difference in

quality between using lightcuts and directly sampling the light tree with no cuts. Indeed,

in the Arnold Buildings scene, using no cuts actually provides slightly better quality. This is

mainly because, when using relatively few light samples, the selected cut may not always
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Table 4.3: Comparisons using 8 light samples per pixel.

Random Unbalanced Tree Perfect Tree
Sampling No Cuts Lightcuts No Cuts Lightcuts

Frame Time
Crytek Sponza 29.9 ms 300.1 ms 287.9 ms 43.7 ms 27.4 ms
Cornell Box 13.8 ms 53.1 ms 44.7 ms 22.3 ms 19.1 ms
Arnold Buildings 12.7 ms 26.5 ms 21.5 ms 18.9 ms 15.9 ms
Lumberyard Bistro 28.1 ms 52.0 ms 36.9 ms 39.9 ms 28.7 ms
Sampling Time
Crytek Sponza 20.8 ms 39.3 ms 26.1 ms 33.4 ms 17.4 ms
Cornell Box 7.7 ms 25.7 ms 18.6 ms 14.8 ms 11.8 ms
Arnold Buildings 6.4 ms 19.9 ms 15.1 ms 12.4 ms 9.8 ms
Lumberyard Bistro 18.1 ms 41.0 ms 26.9 ms 29.2 ms 18.7 ms
MSE
Crytek Sponza 0.119 0.088 0.093 0.092 0.085
Cornell Box 0.123 0.053 0.048 0.070 0.065
Arnold Buildings 0.107 0.030 0.039 0.063 0.065
Lumberyard Bistro 0.035 0.022 0.025 0.028 0.028
SSIM
Crytek Sponza 0.170 0.208 0.205 0.201 0.214
Cornell Box 0.155 0.173 0.179 0.162 0.165
Arnold Buildings 0.369 0.451 0.436 0.403 0.401
Lumberyard Bistro 0.149 0.232 0.208 0.195 0.188

provide a good clustering of lights and some light trees may have substantially stronger

illumination than others. Therefore, using one light sample per subtree, as we use in

our stochastic lightcuts approach, does not always provide the best sample distribution.

Nonetheless, the performance improvement due to cut sharing allows using more light

samples per pixel, thereby improving the final result within the same render time.

Moreover, using an unbalanced tree often improves the sampling quality with the

same number of samples. On the other hand, the cost of building an unbalanced tree

and sampling it leads to using fewer light samples within the same render time.

4.5.4 Light Sampling Improvements

Our cut sharing method (Section 4.3.3) can provide substantial reduction in sampling

time. An example of this is shown in Figure 4.9, comparing sampling quality and per-

formance with and without cut sharing. Notice that images with cut sharing can include

visual artifacts prior to filtering, particularly near depth discontinuities (Figure 4.9a). Yet,
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(a) (b)

(c) (d)

Figure 4.9: Images rendered with and without cut sharing using 32 light samples per pixel:
(a) cut sharing with k = 8 (sampling time: 31.3 ms) before filtering, (b) no cut sharing
(sampling time: 37.8 ms) before filtering, (c) cut sharing after filtering, and (d) no cut
sharing after filtering. The filtered results are generated using an SVGF filter [2] with
α = 0.2 and accumulation of 5 frames.

after applying spatiotemporal filtering, it produces indistinguishable filtered results (Fig-

ure 4.9c). In terms of performance, cut sharing provides about 20% speedup in sampling

time in this example, including the overhead of the cut selection computation, which takes

less than 2% of the light sampling time.

As we explain in Section 4.3.1 our method permits using two-level light trees. Using

a two-level light tree introduces some additional cost, both in light tree construction and

light sampling. On the other hand, depending on the scene, the improvement over using a

single perfect tree can be substantial. We demonstrate this in Figure 4.10 using the Amazon

Lumberyard Bistro scene. In this case, using a two-level light tree slightly increases the light

sampling time from 17.4 ms to 18.7 ms, but it also reduces the noise. A two-level tree is

expected to provide some improvement in quality and some reduction in performance,

but whether a two-level tree would be beneficial over a single-level perfect tree depends

on the scene.

As we explain in Section 4.3.4, our cut sharing approach allows using interleaved

sampling for further reducing the sampling cost or increasing the effective sample count.

The example in Figure 4.11 shows the Amazon Lumberyard Bistro scene rendered with and

without interleaved sampling, using 8 samples per pixel. In this case, interleaved sam-

pling uses a subblock size of 2 × 2. Therefore, each cut for each subblock contains 32
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(a) Single-Level (b) Two-Level (c) Reference
Figure 4.10: The quality improvement of using a two-level tree: images for both (a) single-
level and (b) two-level trees are rendered using stochastic lightcuts with 8 light samples
per pixel.

(a) No Inter. Samp.
8 spp

18.7 ms

(b) Interleaved Samp.
8 spp (2 × 2)

21.0 ms

(c) No Inter. Samp.
32 spp
56.1 ms

Figure 4.11: Interleaved sampling: (a) no interleaved sampling with 8 samples per pixel,
(b) interleaved sampling within a 2 × 2 subblock with 8 samples per pixel, approximating
32 samples per pixel, and (c) no interleaved sampling with 32 samples per pixel. The
images on the bottom row show results filtered results with SVGF [2] without temporal
accumulation (to amplify the difference of quality). The images are rendered using the
screen and camera configuration of Lumberyard Bistro in Figure 4.8.
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light samples. As a result, interleaved sampling can approximate the quality of using 32

light samples by computing 8 light samples per pixel. Note that interleaved sampling is

particularly effective when combined with spatiotemporal filtering.

Figure 4.12 compares the performance of hierarchical importance sampling using the

new weight computation method we introduced in Section 4.3.2 to the weight computation

scheme in the stochastic lightcuts paper [4]. Notice that in all our test scenes our new

weights computation provides a minor but visible improvement in sampling quality.

Yuksel [4]

MSE: 0.085

Ours

MSE: 0.085

Reference

MSE: 0

MSE: 0.071 MSE: 0.065 MSE: 0

MSE: 0.072 MSE: 0.065 MSE: 0

MSE: 0.032 MSE: 0.028 MSE: 0
Figure 4.12: Hierarchical importance sampling using the weight computation scheme of
Yuksel [4] and our new weight computation method (Section 4.3.2).
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4.6 Limitations
While our perfect binary trees can be built extremely fast on the GPU using Morton

codes, the resulting light trees lead to more noise as compared to unbalanced light trees

generated with agglomerative clustering. This is because using a balanced tree and only

considering spatial proximity when partitioning the nodes limits the quality of the light

tree. Although the improvement in sampling speed with perfect trees can compensate for

the loss in tree quality in our tests, they might be less effective in some scenes.

While our cut sharing technique has been effective in our tests, it might lead to visual

artifacts in some scenes. In particular, specular highlights on highly glossy surfaces near

cut sharing block boundaries may form discontinuities that would be difficult to detect

with a geometry-aware filter. Furthermore, since our cut sharing method uses screen-space

blocks, the chosen cut for a block may not be ideal for all pixels of the block, particularly

near depth discontinuities, and it is not suitable for more general applications, like path

tracing or ray traced reflections.

4.7 Conclusion
We have presented a real-time light sampling technique for scenes with many lights.

Our method extends stochastic lightcuts by using a perfect binary light tree with a novel

weight computation scheme and cut sharing. By minimizing the cost of light sampling,

our method allows using more light samples within the same render time for achieving

higher sampling quality. Since our method does not restrict the types of lights that can be

sampled and the light tree can be constructed efficiently every frame, we can accommodate

fully dynamic scenes with a variety of light types.



CHAPTER 5

FAST VOLUME RENDERING WITH

SPATIOTEMPORAL RESERVOIR

RESAMPLING1

Volume rendering under complex, dynamic lighting is challenging, especially if target-

ing real-time. To address this challenge, in this chapter, we extend a recent direct illumina-

tion sampling technique, spatiotemporal reservoir resampling, to multi-dimensional path

space for volumetric media.

By fully evaluating just a single path sample per pixel, our volumetric path tracer

shows unprecedented convergence. To achieve this, we properly estimate the chosen

sample’s probability via approximate perfect importance sampling with spatiotemporal

resampling. A key observation is recognizing that applying cheaper, biased techniques

to approximate scattering along candidate paths (during resampling) does not add bias

when shading. This allows us to combine transmittance evaluation techniques: cheap ap-

proximations where evaluations must occur many times for reuse, and unbiased methods

for final, per-pixel evaluation.

With this reformulation, we achieve low-noise, interactive volumetric path tracing with

arbitrary dynamic lighting, including volumetric emission, and maintain interactive per-

formance even on high-resolution volumes. When paired with denoising, our low-noise

sampling helps preserve smaller-scale volumetric details. 1

5.1 Introduction
Smoke, fire, clouds, and other participating media are vital in virtual scenes; modern

movies, games, and simulations rely heavily on media for realism and ambiance. But

1D. Lin, C. Wyman, and C. Yuksel, “Fast volume rendering with spatiotemporal reservoir resampling,”
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2021), vol. 40, no. 6, pp. 279:1–279:18, 2021.
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real-time rendering of participating media is challenging. Even traditional raster pipelines

have separate order-independent transparency passes [147] and data structures for volume

lighting [50]. With real-time ray tracing [148] and more complex ray-traced lighting [72],

integrating dynamic ray-traced media will be vital for achieving a uniform look.

In this chapter, we introduce an effective path sampling solution for real-time volume

rendering with multiple scattering and volumetric emission. To do this, we generalize re-

sampled importance sampling [17] and spatiotemporal reservoir resampling [7] to path integrals.

These have proven effective for sampling direct illumination on surfaces. We generalize

them to path space, providing importance sampling that closely approximates our inte-

grand: a path integral formulation of the volume rendering equation. We also present

numerous optimizations to minimize computation and memory overhead. As a result,

we can estimate the multi-dimensional volume rendering integral while shading just one

path per pixel, enabling real-time volume rendering under arbitrary scene illumination,

including environment maps, area lights, and volumetric emission.

Our technical contributions include:

• A generalization of resampled importance sampling (Section 5.3) and spatiotemporal

reservoir resampling (Section 5.4) to complex path integrals,

• An efficient importance sampling estimator for the volumetric path integral (Sec-

tion 5.3.3), including multiple scattering and volumetric light emission,

• A temporal reprojection (Section 5.4.4) and practical velocity resampling method for

robust temporal reuse (Section 5.5.2),

• Optimized path space transmittance estimates (Section 5.5.1). These only affect im-

portance sampling, not final path throughput, allowing use of efficient biased esti-

mates without biasing the results (e.g., sampling lower resolution volumes).

Our renderer runs interactively, reusing carefully-chosen paths to evaluate the volume

rendering equation. While we can produce unbiased renderings (with static volumes and

dynamic lighting), by allowing a little bias (Section 5.4.4) we can reduce sampling variance

and handle more dynamism. Our work significantly lowers variance compared to state-

of-the-art real-time path sampling (Figure 5.1).
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Reference

Reference Reference

Ours

Ours Baseline BaselineOurs

Baseline

MSE: 0.037 MSE: 0.052 MSE: 0.196MSE: 0.148

Figure 5.1: A volumetric bunny illuminated by a complex environment map and emissive
logos. We compare our new volumetric ReSTIR with offline references and an equal-time
baseline (combining decomposition tracking [5] and residual ratio tracking [6]). We show
our work with (left) single scattering in 55 ms and (right) three-bounce multiple scattering
in 142 ms.

Section 5.2 reviews prior work, summarizing resampled importance sampling (RIS)

and spatiotemporal reservoir resampling (ReSTIR). In Section 5.3, we develop an RIS es-

timator to efficiently sample the volumetric path integral. In Section 5.4, we modify Re-

STIR’s iterative resampling to efficiently reuse spatiotemporal volumetric path samples.

We provide key implementation details in Section 6.7.

5.2 Background: RIS and ReSTIR
In this section, we provide a detailed introduction of resampled importance sampling

(RIS) and ReSTIR, which helps the readers to understand the basis of our method. Note

that the notations here follow Bitterli et al. [7]. We re-introduce RIS and ReSTIR using

"proper" notations that fit into our generalized resampled importance sampling frame-

work in Chapter 6.

5.2.1 Resampled Importance Sampling (RIS)

Our volume sampling builds on resampled importance sampling (RIS) [17], Given function

f (x) defined over domain x ∈ D, RIS provides an importance sampling estimator for the

integral:

I =
∫

D
f (x) dx . (5.1)
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Let p̂ be a target PDF without a practical sampling algorithm. RIS generates M ≥ 1

candidate samples = {x1, . . . , xM} using a (suboptimal) source PDF p. Then, it randomly

selects a sample xr, for r ∈ {1, . . . , M}, using discrete probabilities

p(xr|) =
w(xr)

∑M
j=1 w(xj)

with w(x) =
p̂(x)
p(x)

. (5.2)

The resulting 1-sample RIS estimator can be written as

〈I〉1,M
ris = Ep̂(xr)

(
1
M

M

∑
j=1

w(xj)

)
with Ep̂(xr) =

f (xr)

p̂(xr)
. (5.3)

The parenthetical term corrects for differences between the actual probability used to sam-

ple xr and the desired PDF p̂(xr). This gives an unbiased estimate if p(x) and p̂(x) are

non-zero for all x with non-zero f (x). As M → ∞, the distribution of xr approaches p̂.

RIS is particularly effective if p̂ closely approximates f and generation and evalua-

tion of candidate samples xj and w(xj) are cheap. In Talbot et al. [17], x is a point on

a light source, p(x) is the light sampling PDF. p̂(x) is unshadowed reflected radiance,

including BSDF, geometry term, and incident radiance. This reasonably approximates the

integrand, without expensive visibility queries. When directly lighting opaque surfaces,

this improves sampling quality over standard importance sampling.

5.2.2 Spatiotemporal Reservoir Resampling (ReSTIR)

Spatiotemporal reservoir resampling (ReSTIR) [7] transforms RIS into a streaming algo-

rithm, avoiding storage of most candidate samples by using weighted reservoir sampling

[121]. It is designed for direct illumination sampling from many lights for real-time ren-

dering. For each pixel, ReSTIR maintains a reservoir that stores a sample xr selected from

the previous m candidates. Each new candidate xm+1 is selected with probability

p(xm+1| ∪ {xm+1}) =
w(xm+1)

∑m+1
j=1 w(xj)

. (5.4)

This can be seen as streaming candidate samples into a reservoir. Since the reservoir stores

only the selected sample and a running sum of weights ∑m+1
j=1 w(xj), many candidate sam-

ples M can be considered without additional storage, improving the sampling quality.

ReSTIR also enables spatiotemporal reuse by combining the reservoirs of nearby pixels

and the previous frame, exponentially increasing the effective candidate sample count (Fig-

ure 5.2). While rendering the first frame, each pixel q allocates a reservoir and streams M
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Figure 5.2: Extending ReSTIR [7] for participating media entails updating each component
of this ReSTIR pipeline: defining candidate generation in path space (see Section 5.3.2), RIS
estimators to efficiently evaluate high-dimensional integrals (Section 5.3.3), and spatial and
temporal sample reuse in this domain (Section 5.4).

newly generated candidates to select a sample xq. Then, the reservoirs of a random subset

of nearby pixels are combined. Let q′ represent a pixel near q. Their two reservoirs cannot

simply be combined, unless the target PDFs p̂q(x) and p̂q′(x) for both pixels are identical.

Generally, this is not the case and p̂q(x) �= p̂q′(x). Therefore, ReSTIR includes a correction

factor wq′→q for using the selected sample xq′ in reservoir q′ for pixel q, defined as

wq′→q =
p̂q(xq′)

p̂q′(xq′)
wsum

q′ , where wsum
q′ =

M

∑
j=1

p̂q′(xj)

pq′(xj)
. (5.5)

Note that wsum
q′ is the running sum in the reservoir from initial candidate generation. For

multiple iterations of reuse (chained RIS passes), wsum
q′ becomes the running sum from the

prior RIS pass.

The resulting estimator combining N neighboring reservoirs from pixels q1, . . . , qN can

be written as

〈I〉N,1,M
ReSTIR = Ep̂q(xr)

(
1

Mq

N

∑
i=0

wqi→q

)
, (5.6)

where xr is the sample selected from one of the N+1 reservoirs, Mq =(N+1)M is the total

effective candidate sample count for pixel q, and we define q0 ≡ q. Yet, this leads to a biased

estimator, because p̂q′(x) can be zero for x with non-zero pq(x). For correcting this bias,

Bitterli et al. [7] propose replacing the 1/Mq term in Equation 5.6 with the MIS weight of

the selected sample
p̂r(xr)

M ∑N
i=0 p̂qi(xr)

, (5.7)

where p̂r denotes the PDF of the reservoir that produced xr.

This MIS weight is stochastic (it depends on the chosen sample). Although cheaper to

evaluate than the deterministic MIS weight proposed by Talbot [8], it introduces noise. The
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deterministic Talbot MIS can be used by multiplying the weights of samples in Equation 5.6

with an additional term:

wnew
qi→q = wqi→q ·

Mq p̂qi(xqi)

M ∑N
s=0 p̂qs(xqi)

, (5.8)

Additionally, ReSTIR allows temporal reuse by passing the final selected sample xr

forward for reuse next frame. Combining spatial and temporal reuse, the effective candi-

date sample count Mq grows exponentially. To prevent unbounded influence of temporal

samples, a user-defined temporal limiting factor Q is used to enforce Mq ≤ QM. When

Mq exceeds this limit, the running sum is scaled by QM/Mq and then Mq is updated as

Mq ← QM.

But the benefit of spatiotemporal reuse is not indefinite. If p̂q′ from neighbor reservoir

q′ substantially differs from p̂q, spatially reusing q′ can negatively impact sampling quality

instead of improving it. Thus, applying heuristics to selectively reject reservoirs and using

high quality MIS to reweight samples can substantially reduce variance [149, 150].

ReSTIR is highly effective in estimating direct illumination on opaque surfaces from

many lights [7]. It chains RIS passes spatiotemporally to quickly accumulate many sam-

ples. Additionally, successive RIS passes can use higher quality p̂ to improve sampling

quality at a relatively low cost. While p̂ typically contains unshadowed reflected radiance,

ReSTIR injects visibility into p̂ at a lower frequency (known as visibility reuse).

Boksansky et al. [111] store reservoirs in world space so a path tracer can efficiently

perform NEE on secondary path vertices. Concurrent work by Ouyang et al. [10] extends

screen space ReSTIR for surface global illumination. This can be viewed as a special case

of our method, which handles both surface and volume transport and interreflections

between them (see Figure 5.1, right).

We extend the concepts in ReSTIR to real-time volume rendering; to achieve that, we

solve various challenges when resampling (Section 5.3) and reusing samples (Section 5.4)

in volumetric path space.

5.3 RIS for Volume Rendering
We target extending ReSTIR [7] to volumetric path tracing. As ReSTIR builds on RIS

[17], we begin by developing an RIS estimator for the volume rendering equation.
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Volume rendering involves higher-dimensional integrals than the direct surface illumi-

nation in Bitterli et al. [7] and Talbot et al. [17]. Visibility alone forms an integral along

primary rays. Thus, we cannot just sample light positions; we must sample entire paths.

In this section, we provide a path integral representation of the volume rendering

equation (Section 5.3.1), describe how we can generate candidate paths (Section 5.3.2), and

explain how to estimate the volume rendering equation using RIS (Section 5.3.3).

5.3.1 Path Integral Representation of Volume Rendering

Let λ denote a path. We can write the volume rendering equation (Equation 2.1) as a

path integral

L(x0, ωo) =
∫

Λ
F(λ) dλ , (5.9)

where Λ is the set of all paths and F(λ) is the incident radiance through the path λ.

Consider a path λ with k scattering events, forming k + 2 vertices x0, . . . , xk+1, with x0

a camera vertex and xk+1 a light vertex. A light vertex can be a point on a light surface or

inside emissive media. For brevity, the formulations below assume intermediate vertices

x1, . . . , xk are in the medium, but this can easily be extended to points on surfaces (e.g., see

Figures 5.1).

Let zi = |xi+1 − xi| be the distance between consecutive path vertices and ωi = (xi+1 −

xi)/zi be the direction towards the next path vertex. Then, we can write the incident

radiance as

F(λ) = Γs(λ, k) T(xk ↔ xk+1) G(xk ↔ xk+1) L(xk+1 � xk), (5.10)

where geometry term Gi = G(xi−1 ↔ xi) is 1 using solid angle measure and 1/z2
i using

volume measure, and Γs represents path throughput:

Γs(λ, k) =
k

∏
i=1

T(xi−1 ↔ xi) σs(xi) Gi ρi , (5.11)

with ρi = ρ(xi,−ωi−1, ωi) the phase function and L(xk+1 � xk) the emitted radiance at xk+1

towards xk. Note, for a path with k = 0 (i.e., no scattering events) we take Γs(λ, k) = 1.

The emitted radiance L can come from either a light sample at xk+1, if λ is a scattering

path, or volumetric emission at xk+1, if λ is an emission path. More specifically, we can write

L(xk+1 � xk) =

{
Ls(xk+1 � xk) if scattering path,
σa(xk+1) Lm

e (xk+1 � xk) if emission path.
(5.12)
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We use Ls to represent radiance from the light. The notation assumes the source is an emis-

sive surface, but it can easily be extended to other lights. For example, for an environment

map xk+1 is an infinitely distant vertex and Ls is the radiance along direction xk+1 � xk.

5.3.2 Generating Path Samples

To use an RIS estimator for the path integral formulation of volume rendering (Equa-

tion 5.9), we must generate numerous random paths λ with PDF p(λ).

Our path generation approach is similar to path tracing with next event estimation, as

shown in Figure 5.3. We start with a ray from x0 towards ω0 = −ωo. At each step, we

first pick a random distance zi along our ray with PDF p(zi|xi−1, ωi−1). This specifies the

next path vertex xi = xi−1 + ziωi−1. Then, for each scattering event, we pick a scattering

direction ωi with a PDF p(ωi|xi). We repeat this step to generate a random walk of a

desired length.

As shown in Figure 5.3, each vertex xi on our random walk spawns two candidate

paths to feed our resampling. The first is a scattering path, using next event estimation to

sample a light for xi+1. If our media emits light, we generate an emission path ending at

xi. Both scattering and emission paths end at a light: either on a surface or in the media.

Emission at intermediate vertices is ignored, as it is accounted for on shorter paths (i.e.,

spawned at vertex xj, for j < i).

With this procedure, the PDF of a scattering or emission path with k scattering events

x z

ω
ω ωx

x
x

xK

z z

Figure 5.3: A random walk with K vertices generates 2K candidate paths for later reuse:
K are scattering paths that terminate at a light (yellow) with next event estimation and the
remaining K are emission paths terminating in the media due to volumetric emission (red).
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and k + 2 vertices can be written as

p(λ) =
k′

∏
i=1

p(zi|xi−1, ωi−1) Gi p(ωi|xi) , (5.13)

where k′ = k for scattering paths and k + 1 for emission paths. Here, the PDF of sampling

a direction is

p(ωi|xi) =




ρi if i < k′,
pNEE(ωk|xk) if i = k′ and scattering path,
1 if i = k′ and emission path.

(5.14)

where pNEE(ωk|xk) represents the light sampling PDF used for next event estimation.

The PDF of sampling a distance zi along a ray from xi−1 towards ωi−1 depends on

the sampling method used. When using RIS without ReSTIR, delta tracking [83] is a

convenient choice for this task. Delta tracking has a very desirable PDF

p(zi|xi−1, ωi−1) = T(xi−1 ↔ xi) σt(xi) . (5.15)

A problem with this PDF is transmission T is either not available in closed form or expen-

sive to compute, and it must be reevaluated repeatedly (as part of p(λ)) when resampling

via RIS. Fortunately, we can select target PDF p̂(λ) to cancel terms in p(λ), avoiding

explicit evaluation of T in p(λ). But when spatiotemporally reusing samples, this can-

cellation is no longer possible; thus, we must replace delta tracking with another sampling

method, as discussed in Section 5.4.

A random walk up to (a user-defined maximum of) K steps generates up to K scattering

paths with 0 < k ≤ K and K emission paths with 0 ≤ k < K, as shown in Figure 5.3. But

a random walk may terminate early, if it exits the media prior to the Kth scattering event.

Let n be the total number of paths generated by a random walk (i.e., n ≤ 2K). If sampling

one of these n paths uniformly, the joint sampling PDF p̄(λ) can be written relative to the

PDF of the random walk p(λ) as

p̄(λ) =
1
n

p(λ) . (5.16)

To generate more candidate paths, we can perform additional random walks starting

from x0.
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5.3.3 RIS Estimation of Volume Rendering

We generate paths using M random walks. Each random walk j produces nj paths.

Uniformly selecting one of the nj paths as a sample for the path integral leads to high

variance. Instead, we use RIS to select one path from each random walk to estimate the

path integral, treating the nj paths as stratified samples with source PDF p̄(λi
j) for each

path i ∈ {1, ..., nj} and using a target PDF p̂(λi
j). If M = 1, then this RIS estimator can be

written as

〈L(x0, ωo)〉1,1
ris = Ep̂(λ

r
j )

1
nj

nj

∑
i=1

p̂(λi
j)

p̄(λi
j)

= Ep̂(λ
r
j )

nj

∑
i=1

p̂(λi
j)

p(λi
j)

(5.17)

where Ep̂(λr
j ) = F(λr

j )/ p̂(λr
j ) and λr

j represents the selected path. Notice the 1/nj factor

cancels the same value inside p̄(λi
j). Appendix A has a more rigorous derivation. Given

M random walks, we again resample to select one of the M paths λr
1, ..., λr

M (note index

r varies with j). As each candidate path λr
j comes from a prior RIS step, they must be

weighted appropriately (by the running sum from the prior RIS round). Thus, the RIS

estimator to select one path out of all M random walks is

〈L(x0, ωo)〉1,M
ris = Ep̂(λr)

(
1
M

M

∑
j=1

nj

∑
i=1

w(λi
j)

)
. (5.18)

We simplify the notation to λr (instead of λr
r′) to represent the final path sample from this

round of RIS. Here both Ep̂(λr) = F(λr)/ p̂(λr) and w(λi
j) = p̂(λi

j)/p(λi
j) depend on

chosen target PDF p̂(λ).

Ideally, p̂(λ) closely matches F(λ) but is cheaper to compute, as p̂(λ) gets evaluated

for each candidate path sample. Therefore, we use F̃(λ), a cheaper approximation of F(λ),

for paths with next event estimation

p̂(λ) =

{
F̃(λ) if scattering path,
F(λ) if emission path.

(5.19)

This approximation comes from simply using a cheaper transmittance estimate T̃ for light

samples (discussed in Section 5.5.1):

F̃(λ) = Γs(λ) T̃(xk ↔ xk+1) G(xk ↔ xk+1) L(xk+1 � xk) . (5.20)

This particular definition of p̂(λ) includes the same transmittance terms T as p(λ).

Thus, all T terms cancel when computing w(λ) = p̂(λ)/p(λ), such that

w(λ) = Wk(λ)
k

∏
i=1

σs(xi)

σt(xi)
, (5.21)
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where

Wk(λ) =




ρk T̃(xk↔xk+1) Gk+1 Ls(xk+1�xk)
pNEE(ωk |xk)

if scattering path,
σa(xk+1)
σt(xk+1)

Lm
e (xk+1 � xk) if emission path.

(5.22)

This particular choice for p̂(λr) also simplifies the computation of the Ep̂(λr) =
F(λr)
p̂(λr)

term,

such that

Ep̂(λr) =

{ T(xk↔xk+1)
T̃(xk↔xk+1)

if scattering path,

1 if emission path.
(5.23)

Note the only remaining T term is needed to compute direct illumination for the one

chosen path sample λr in Ep̂(λr). This T term appears in no PDFs, only final shading, so

we can afford unbiased estimates or even analytical methods. We discuss our choices for

evaluating and estimating T in Section 5.5.1.

All source PDFs, however, cannot use stochastic estimation or biased approximation.

While resampling allows arbitrarily defining p̂(λ) (including approximations), approximat-

ing source PDF p(λ) after choosing sample λ introduces estimation error. By carefully

choosing p̂(λ), we avoid expensive T terms in our PDFs and allows building an efficient

RIS estimator for volume rendering with multiple scattering and volumetric emission.

This RIS estimator can be performed in a streaming manner using weighted reservoir

sampling [121], such that only the one selected sample per pixel is stored, instead of

explicitly storing all M candidate path samples.

5.4 Spatiotemporal Reuse
Quality of the RIS estimator in Equation 5.18 depends on the candidate sample count

M. By reusing a pixel’s candidate samples when evaluating neighbor pixels, we can sub-

stantially increase the effective per-pixel candidate sample count with minimal overhead.

Similar to the direct illumination sampling in ReSTIR [7], we leverage streaming RIS and

screen-space spatiotemporal reuse, storing intermediates in per-pixel reservoirs.

We generate M candidate samples λr
1, ..., λr

M for each pixel. Each pixel selects one

candidate λr using RIS and weighted reservoir sampling. We then consider the samples

selected in nearby reservoirs and from the prior frame. Combining these reservoirs, we

pick one sample per pixel to evaluate.
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While our reuse follows the pattern of Bitterli et al. [7], key changes are needed to reuse

volumetric path samples. Generating candidate paths for spatiotemporal reuse requires

sampling a closed-form PDF, which requires updating the candidate generation process

in Section 5.3.3, as we describe in Section 5.4.1. We discuss reusing paths between reser-

voirs in Section 5.4.2; unlike reusing direct light samples in ReSTIR, paths can be mapped

between reservoirs in different ways with varying trade-offs. We introduce changes for

spatial reuse in Section 5.4.3, refining the transmittance estimation and removing bias via

different MIS weighting. Finally, in Section 5.4.4 we introduce a new stochastic repro-

jection for temporally reusing volumetric path samples, as surface motion vectors fail in

volumes. Combined spatiotemporal reuse dramatically increases effective sample count,

giving better quality than either reuse alone, as shown in Figure 5.4.

Importantly, our work combines transmittance estimates of varying quality, as we need

a closed-form PDF for distance sampling, an efficient way to resample transmittance spa-

tiotemporally, and unbiased transmittance for final shading (see Sections 5.4.1 and 5.4.3).

We exploit resampling to iteratively refine transmittance, doing more expensive computa-

tions at lower frequency (see Figure 5.5).

RIS Only (No Reuse) Temporal Reuse Only Spatial Reuse Only Spatiotemp. Reuse

17 ms 32 ms 42 ms 45 ms

4 ms 10 ms 8 ms 11 ms
Figure 5.4: Both spatial and temporal reuse improve quality significantly. (Left) scenes
with spatiotemporal reuse, and (right) insets comparing quality and performance without
reuse, with only spatial or temporal reuse alone, and with spatiotemporal reuse. (Top) the
Bunny Cloud scene uses a quickly rotating environment map and (bottom) the Plume scene
has dynamic volume data.



65

Temporal Reuse

Figure 5.5: During sample reuse, transmittance gets refined from an initial piecewise
constant approximation T∗ to trilinear interpolation for ray marching T̃ to an analytical
evaluation for shading T. But we always compute transmittance for NEE via ray marching
(except final shading). Buckets visualize reservoirs, with initial candidates marked in blue,
reservoir samples in red, and final shaded samples in purple.

5.4.1 Generating Candidate Samples for Reuse

When reusing samples λ from neighbor pixels or prior frames, we must explicitly com-

pute (i.e., resample) the target PDF p̂(λ) at the current pixel and frame. Thus, using a target

p̂(λ) containing expensive transmittance terms T (as in Section 5.3) makes spatiotemporal

reuse computationally infeasible. But not including T in p̂(λ) means cancellation will not

occur (in Equation 5.21) while computing w(λ) = p̂(λ)/p(λ), requiring explicit transmit-

tance computation for each candidate path (in p(λ)). To avoid this expense, we avoid

using T terms in both p(λ) and p̂(λ), replacing delta tracking (during candidate path

generation) with an alternative distance sampling method with a closed-form PDF that

is cheap to evaluate.

We use regular tracking [81]. Regular tracking may not outperform delta tracking,

but it can be accelerated using a piecewise-constant approximation of the volume. For

voxelized volumes, all points x within voxel v with constant density σ∗
t,v get σ∗

t(x) = σ∗
t,v.

Let T∗ denote transmittance between two points in this piecewise-constant volume. The

PDF for regular tracking with piecewise-constant volume is then

p(zi|xi−1, ωi−1) = T∗(xi−1, xi) σ∗
t(xi) . (5.24)

Here, the transmittance term can be written as
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T∗(xi−1, xi) = ∏
v

e−σ∗
t,vdi,v , (5.25)

where di,v is the length of line segment xi−1xi inside voxel v (thus, di,v = 0 for voxels that

do not intersect xi−1xi).

We use this piecewise-constant volume only for importance sampling, i.e., to gener-

ate candidates λi
j and evaluate their PDFs p(λi

j) and p̂(λi
j). When computing final path

throughput, F(λr), for the one chosen sample λr per pixel, we use the more expensive,

unbiased transmittance function T and density σt.

Care is required when generating candidates from the piecewise-constant volume. If

σt is non-zero anywhere inside voxel i, σ∗
t,i for the voxel must be non-zero to avoid bias. For

example, we cannot trilinearly interpolate a voxel grid for T and use nearest sampling for

T∗. Nearest sampling can return zero some places where trilinear sampling gives non-zero

density, which would introduce bias. To avoid this, we use nearest sampling for T∗, except

in zero-density voxels where we return the average density of their neighbors.

For further acceleration, we can use a lower resolution piecewise-constant volume for

path generation. Our results (Section 5.5.1) show that defining this piecewise-constant

volume at lower resolution than the original volume substantially improves performance

with only minor quality impacts.

5.4.2 Path Reuse

To reuse paths we must create a path λ with vertices x0, . . . , xk+1 in pixel q based on

a path λ′ from a different pixel q′ with vertices x′0, . . . , x′k+1. As both λ and λ′ start at

the same camera position, we get x0 = x′0. However, the same is not true for the other

vertices. The pixels may have different primary ray directions ω0 �= ω′
0, so the next vertex

x1 = x0 + z1ω0 must be different as well (i.e., x1 �= x′1). We can, however, use the same

distance along the primary ray for both paths, such that z1 = z′1.

For the following vertices, we consider two options (Figure 5.6):

• Vertex reuse by simply setting xi = x′i for i ≥ 2, or

• Direction reuse by taking ωi = ω′
i and zi = z′i.

Vertex reuse reduces computation, as we need not recompute T∗(xi ↔ xi+1) for i ≥

1. However, it includes an unbounded geometry term G(x1 ↔ x2) = 1/ |x2 − x1|2 that
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x0

ω′1
ω′2

ω′3

x1

ω0

ω′0 x′1
x′3

x′2

(a) Vertex Reuse

ω1
ω2

ω3

x2

x3

x0

ω′0
ω′1

ω′2

ω′3

ω0
x1

x′1
x′3

x′2

(b) Direction Reuse
Figure 5.6: Path λ (black) is created from a neighbor pixel’s path λ′ (blue). Vertex x1 is
the same distance along primary ray ω0 (as x′1 along ω′

0). Vertex reuse connects x1 to x′2
(red segment) to form the rest of λ. Direction reuse takes ωi = ω′

i and zi = z′i along the
remaining path.

introduces fireflies. In Bitterli et al. [7], singularities occur around corners and edges, but

in volumes they can occur anywhere.

Direction reuse must compute T∗(xi ↔ xi+1), but avoids these artifacts. It is also pos-

sible to combine both approaches by reusing directions for a desired number of scattering

events then switching to vertex reuse; this reduces the probability of fireflies and bounds

the cost. Our experiments show reduced noise for a slight cost increase with direction

reuse, so results in the chapter all rely on direction reuse. While long very paths may be

initially generated, they are unlikely to be selected and reused via RIS as they carry less

energy. This helps bounds the average cost of direction reuse.

As for the last vertex x′k+1, if on a light surface or in emissive media, we take xk+1 =

x′k+1. If our reused path samples the environment map, we take ωk = ω′
k.

Vertex reuse in the presence of surfaces is straightforward, by simply adding surface

vertices to the path. For direction reuse, if x′i lies on a surface, we put xi onto the closest

surface along the ray starting at xi−1 with direction ωi−1. Hence, if the scene does not

contain a volume, only reflection directions are reused.

5.4.3 Spatial Reuse

After generating M per-pixel candidates, each pixel q’s reservoir has selected a path

λq (i.e., λr for each q). Next, we spatially reuse from neighbor pixel reservoirs, using RIS
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to combine the neighbor reservoirs with the current pixel’s. For each neighbor q′, this

involves computing correction factor wq′→q (per Equation 5.5), using

wq′→q =
p̂q(λq′)

p̂q′(λq′)
wsum

q′ , where wsum
q′ =

M

∑
j=1

nj

∑
i=1

p̂q′(λ
i
j)

pq′(λ
i
j)

. (5.26)

Here, the same path sample λq′ contains different vertices in pixels q and q′ due to

the reuse of z1 along different rays and later direction reuse. Therefore, when computing

p̂q/ p̂q′ in wq′→q, not all transmittance terms in the PDFs cancel, as they are evaluated for

different pixels (none of them cancel with direction reuse and only some of them cancel

with vertex reuse).

As noted in Section 5.4.1, as a byproduct of distance sampling we used a piecewise-

constant volume to compute transmittance T∗. However, when recomputing transmit-

tance values during reuse, there is no computational need for such simplification (cancel-

lation of terms generally cannot happen between neighboring pixels). Plus, the piecewise-

constant sampling enlarges non-zero density regions and leads to suboptimal sampling

quality.

Instead of keeping the lower quality transmittance estimate T∗, during resampling

we can update target function p̂q to use higher quality transmittance than the input p̂q′

values. For resampling p̂q during reuse, we compute a new transmittance estimate, T̃, us-

ing ray-marching with trilinearly filtered densities to improve subsequent sample quality.

Because this (biased) ray marching is only used during importance sampling, and not for

final throughput in F(λ), it does not bias the rendering. An additional advantage of ray

marching is the ability to tune step size, depending on our resampling budget.

Thus, p̂q �= p̂q′ even for q = q′, simply because we use an updated target function for

p̂q (with T̃ instead of T∗) for p̂q. This improved transmittance estimate behaves similar to

visibility reuse from Bitterli et al. [7].

We must also consider that some valid path samples λ for pixel q may never be sampled

by a neighboring pixel q′, i.e., pq′(λ) may be zero for some λ with non-zero pq(λ). Simply

ignoring this introduces sampling bias, excessively darkening the results. Bitterli et al.

[7] correct this via stochastic MIS weighting (i.e., Equation 5.7). Although faster than the

deterministic MIS (Equation 5.8) weighting introduced by Talbot [8], we found stochastic

MIS excessively noisy in volumes, as shown in Figure 5.7.
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(a) No MIS (24 ms) (b) Stoc. MIS (31 ms) (c) Talbot MIS (38 ms) (d) Reference
Figure 5.7: Sample reuse without fireflies requires MIS to appropriately weight samples.
Bitterli et al. [7] introduced a cheaper O(N) stochastic MIS, though for our volume
formulation the more expensive Talbot MIS [8] works better.

Heuristically rejecting spatial neighbors based on features like surface normal or depth

is effective for reducing the noise on surfaces [150], but for volumes such features are

stochastic, making heuristics-based rejection challenging. Instead, we use Talbot MIS for

spatial reuse; while it has quadratic cost, this is acceptable when using a small number of

spatial neighbors.

5.4.4 Temporal Reuse

Temporal reuse significantly improves sample quality by incorporating knowledge

from prior frames. The challenge for such reuse is finding relevant samples by temporally

reprojecting prior frames, including changes from camera motion and volumetric deforma-

tion.

But temporal reprojection is ill-defined for volume rendering. The media in any pixel

may move in many directions, so no single “correct” motion vector can tell us what prior-

frame data should be reused.

We approach the problem probabilistically. With temporal reprojection we seek motion

vectors that select, with high probability, prior frame reservoirs containing useful data. For

example, if most media in a pixel has one motion vector, reusing a reservoir corresponding

to that motion likely reduces variance best (e.g., preferentially sampling motion from

denser media in a pixel instead of following a closer, wispy cloud’s motion).

To that end, we use the motion vector at x1, the first vertex on pixel q’s selected path λq

(prior to spatial reuse). To compute the motion vector, we treat x1 as a particle such that

its previous frame’s position is determined by the velocity field of the volume. This ran-

domizes the choice of motion vector, allowing any visible media to (potentially) contribute
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motion, using the target PDF p̂(z1|x0, ω0). Media with higher p̂(z1|x0, ω0) has a higher

probability to provide the motion vector, which is reasonable as it contributes more pixel

radiance.

Figure 5.8 shows examples of camera animation and volumetric deformation with and

without temporal reprojection. Notice that temporal reprojection can help reduce the noise

substantially.

An important limitation of this temporal reuse and reprojection is it remains unbiased

only for static volumes and camera. Under camera motion or volume deformation, the

chosen temporal reservoir depends on z1 (i.e., the first scatter event). This turns the target

PDFs in RIS into conditional PDFs (conditioned on z1), introducing a slight bias during

reuse if treated as a marginalized PDF.

Bias increases with larger camera motion or volume deformation (see Figure 5.9). But

the bias is generally hard to perceive. Figure 5.9 shows examples with fast camera motion

and large volume deformation, but only slight darkening/brightening happens. Lowering

Q, the temporal limiting factor (see Section 5.2.2), reduces bias, and the bias disappears

entirely a few frames after motion ends.

Note that dynamic lighting does not add bias. Instead, sudden lighting changes effec-

tively lower the PDF for temporal candidates, increasing variance near lighting disconti-

nuities.

5.5 Implementation Details
The above volumetric sampling techniques can be implemented in various ways. In

this section, we provide the details of our prototype.

Our implementation has four passes, similar to the flow in Figure 5.2. First, we gen-

erate initial candidate paths for each pixel and pick one, via RIS, to share with neighbors.

Second, we reproject to find a temporal neighbor for reuse and again resample. Third, we

perform spatial resampling. Finally, we evaluate the selected path sample for shading. We

visualize our pipeline in Figure 5.5. Our reservoir stores full paths as a list of (zi, ωi) tuples.

Memory costs are bounded by the allowed number of scattering events, K. But supporting

infinite bounces is possible by switching to vertex reuse after a few bounces and caching

incident radiance of the remaining path.
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(a) Spatial reuse only (b) No reprojection (c) Temporal reproj. (d) Reference

(e) Spatial reuse only (f) No reprojection (g) Temporal reproj. (h) Reference
Figure 5.8: Under camera motion (top) or volume deformation (bottom), temporal repro-
jection helps identify good samples for reuse. At left, we show references using motion
blur to illustrate the magnitude of per-frame motion. At right, we show insets from a
single frame without motion blur. (a,e) Only spatial reuse within the current frame. (b,f)
Without temporal reprojection we reuse from inappropriate prior frame locations, causing
halos and masking the noise reduction from temporal reuse. (c,g) Our novel temporal
reprojection reduces the haloing and generally reduces noise.

Moderate Camera Motion

Ours averaged Reference Difference ×4

Fast Camera Motion

Ours averaged Reference Difference ×4

Moderate Volume Deformation

Ours averaged Reference Difference ×4

Large Volume Deformation

Ours averaged Reference Difference ×4

Figure 5.9: Bias in temporal reuse with (top) camera motion and (bottom) volume de-
formation, comparing the results of our method averaged over 256 recomputations of
the same frame (to produce nearly-converged images) to reference images. (Left) with
moderate motion/deformation bias is imperceptible, but (right) faster camera motion or
larger volume deformation increases this bias. Note that we use a slowly deforming fog
as the example for moderate volume deformation, which is different from other images.
The full images on the left are rendered with motion blur to illustrate the magnitude of the
camera motion or volume deformation. The insets do not include motion blur.
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5.5.1 Optimizing Transmittance Computation

Transmittance plays a vital role in volumetric resampling, as it contributes significant

cost to target function p̂ and must be evaluated between every two path vertices. Prior

work [7] notes resampling efficiency is maximized when choosing a target function p̂ that

closely approximates integrand f but is much cheaper to evaluate.

When computing transmittance T̃ in p̂ for spatiotemporal reuse, we ray march a coarser

volume (i.e., Mip 1, the original volume downsampled by half). Our step size for ray

marching is the diagonal of a Mip 1 voxel. We lossily compress the downsampled volume

with DirectX’s BC4 block compression format, which compresses density values to 4 bits,

giving a total 64:1 compression from the original; this greatly reduces sampling bandwidth,

improving performance.

Directly rendering such volumes causes overblurring, but we use it just for importance

sampling. Figure 5.10 compares ray marching our downsampled volume with analytical

transmittance computations in the original volume. The downsampled volume slightly

reduces sampling quality, but significantly improves performance. But coarsening can go

too far; Figure 5.10c uses a Mip 3 volume for importance sampling. While cost drops

further, sampling quality decreases significantly.

However, Figure 5.11 shows initial candidate paths can ray march a Mip 2 volume

to estimate the transmittance on NEE segments (i.e., for volumetric shadows) without

affecting sampling quality. This shows the benefit of incrementally injecting higher quality

(a) Analytical
140 ms/MSE: 0.0035

(b) Mip 1 RM
49 ms/MSE: 0.0050

(c) Mip 3 RM
43 ms/MSE: 0.0096

Figure 5.10: When resampling, approximating transmittance by ray marching though
coarser volumes (Mip 1 RM) greatly lowers cost, in exchange for a little noise (compared
to analytical transmittance). But lowering resolution too far (e.g., Mip 3) adds more noise
without much speedup.
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(a) Mip 1 RM
83 ms/MSE: 0.0041

(b) Mip 2 RM
62 ms/MSE: 0.0041

(c) No Shadow
55 ms/MSE: 0.0048

Figure 5.11: As Bitterli et al. [7] found, injecting higher fidelity visibility incrementally
during resampling improves quality without the cost to compute it everywhere. Using (c)
no transmittance for NEE segments increases noise due to poorer sample quality. Adding
transmittance reduces noise, but (b) even very crude approximations (e.g., ray marching a
1/43 sized volume) provide most of the benefits.

transmittance into target function p̂ over multiple rounds of RIS, rather than always using

the highest quality.

We also sample distances from downsampled volumes when generating initial path

candidates. Figure 5.12 shows that mixing Mip 1 for sampling primary path segments

and Mip 2 volume for indirect path segments yields similar quality as analytical regular

tracking in the original volume, but with much higher performance. Again, coarsening

too far significantly skews the sampling distribution, reducing quality (see Figure 5.12c).

In the integrand F, we analytically compute transmittance T by traversing the voxels

using piecewise-trilinear regular tracking [85], giving a closed-form, unbiased transmit-

(a) Analytical
111 ms/MSE: 0.0047

(b) Mip 1+2 RT
49 ms/MSE: 0.0050

(c) Mip 3 RT
44 ms/MSE: 0.0060

Figure 5.12: During candidate path generation, computing transmittance analytically is
costly. We use regular tracking (RT) through coarser volumes to reduce cost with little
impact to sample quality (using Mip 1 for primary and Mip 2 for indirect rays). Coarsening
too far (e.g., Mip 3) noticeably reduces quality without much performance win.
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tance. This traversal is expensive, fetching 8 density values per step to evaluate a cubic

polynomial. However, we only do this for one path—the one selected for final shading.

Should such a closed form solution be infeasible, we can switch to ratio tracking [6] for this

final transmittance estimate; a large majorant should be used to minimize noise by forcing

a smaller average step.

5.5.2 Velocity Resampling

Our temporal reprojection (Section 5.4.4) uses the motion vector of vertex x1 on each

pixel’s selected path λq. Generally this works well, but near volume silhouettes, λq may

not have vertices in the media, placing x1 on the background. This often moves differently

than the volume, giving a halo along edges (see Figure 5.13).

We address this with velocity resampling. For any x1 not in the volume, we generate a

new distance z corresponding to a particle in the volume proportional to the free flight

distance p(z) = σt(x′1)T(x0 ↔ x′1) with x′1 = x0 + zω0, and use the motion vector for this

sample. As z must be sampled in the volume, p(z) is unnormalized. We approximate

distribution p(z) by assigning each voxel a weight proportional to its average p(z), impor-

tance sampling along the ray, and uniformly picking a point within the selected voxel.

This approach increases the probability of picking a point in the media, providing

better temporal reprojection. This reduces noise and bias from suboptimal reprojections, as

temporal reservoirs are more likely to provide relevant paths that reduce variance during

reuse.

(a) No Velocity
Resampling

(b) Velocity
Resampling

(c) Reference

Figure 5.13: Temporal reprojection with and without velocity resampling, shown for a
dynamic camera. (a) Overusing background motion along silhouettes causes brightening
bias around the edge. (b) Velocity resampling fixes this.
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5.5.3 Parameters of Spatiotemporal Reuse

Resampling has various parameters impacting quality and performance. First, we use

M = 4 random walks to generate initial candidates. In scattering paths, this produces

fewer light samples than the 32 light samples used by Bitterli et al. [7], but our path

generation is more expensive, so we trade fewer initial samples for more spatiotemporal

reuse, which maximizes the sampling efficiency in a given budget.

We typically use Q = 4 as the temporal limiting factor, controlling the maximum prior

frame contribution. Larger Q accumulates more samples, but increases the chance of

reusing stale temporal reservoirs, which can cause fireflies under large lighting changes

(see Figure 5.14c).

However, in scenes combining volumes and surfaces under complex illumination, we

use larger Q to accumulate more effective samples to reduce noise. The value chosen

depends on which issue is more problematic. In scenes containing surfaces, we use Q = 10.

During spatial reuse, we use a low-discrepancy sequence to sample 3 random neigh-

bors within a 10 pixel radius. This achieves a balance between correlation artifacts and

error, as shown in Figure 5.15. We use direction reuse by default.

5.6 Results
We built our algorithm in the Falcor real-time rendering framework [151], and we used

GVDB [152] to load and access VDB assets [153]. We captured results on an NVIDIA

GeForce RTX 3090. Performance numbers include initial candidate generation, spatiotem-

(a) Q = 1
MSE: 0.0027

(b) Q = 4
MSE: 0.0020

(c) Q = 20
MSE: 0.0021

Figure 5.14: The temporal limiting factor Q controls reuse behavior. With Q=1, temporal
samples get low relative weight. With Q = 20, older frames have more aggregate impact;
this reduces overall noise, but very old stale samples can get disproportionally weighted
under quickly changing illumination, causing fireflies. We use Q=4.
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(a) 3 pixels
MSE: 0.0012

(b) 10 pixels
MSE: 0.0015

(c) 30 pixels
MSE: 0.0027

Figure 5.15: Comparing spatial reuse over different radii. A smaller radius reduces MSE,
but correlation between nearby pixels becomes visually apparent. Increasing the radius
reduces visual correlation, but also increases error. We use a 10 pixel radius, balancing
these considerations.

poral reuse, and final shading. Scenes with surfaces use inline ray tracing to allow han-

dling the surface visibility together with volumes in one compute shader.

We report error metrics and timing for 1920 × 1080 images, averaging over 256 frames

(after a warmup) to smooth variations. We use HDR light probes and polygonal scenes

with many emissive triangles to create realistic lighting environments.

Unless noted, all figures show static scenes and cameras and are fully unbiased. We do

not leverage this to simplify, cancel, or otherwise reduce computation; thus, the timings

are equivalent under animation. Scenes with dynamic cameras, volumes, and lighting are

shown in our SIGGRAPH Asia 2021 paper’s supplemental video.

We compare our results with a fast implementation of decomposition tracking [5] (to

sample free flight distances) and residual ratio tracking [6] (for estimating transmittance in

NEE). We call this our baseline. Both decomposition and residual ratio tracking use super-

voxels [85] with 8× the original voxel size to store local minimum, maximum, and average

density values; these control volume densities as described by Novák et al. [6] and Kutz

et al. [5]. For GVDB, we use 8×8×8 voxel bricks [152]. This enables storing super-voxel

density bounds in brick headers, allowing efficient fetches during VDB traversal. This

maximizes our baseline’s performance.

5.6.1 Single and Multiple Scattering Results

We show our method in six scenes: the Bunny Cloud in two lighting configurations

(Figures 5.1 and 5.16), the Disney Cloud (Figure 5.16), an Explosion (Figure 5.17), an ani-
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Bunny Cloud (1 bounce) Bunny Cloud (3 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0096 MSE: 0.0026 MSE: 0.0141 MSE: 0.0041

Time: 42.4 ms Time: 37.3 ms Time: 64.2 ms Time: 62.0 ms

Disney Cloud (1 bounce) Disney Cloud (3 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0072 MSE: 0.0031 MSE: 0.0098 MSE: 0.0049

Time: 51.9 ms Time: 48.8 ms Time: 85.9 ms Time: 83.8 ms

Figure 5.16: The Bunny Cloud and Disney Cloud scenes, with roughly equal-time compar-
isons between the baseline and our method.
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Plume (1 bounce) Plume (7 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0053 MSE: 0.0015 MSE: 0.0061 MSE: 0.0026

Time: 13.0 ms Time: 13.0 ms Time: 36.0 ms Time: 32.2 ms

Explosion (2 bounces) Explosion (4 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0070 MSE: 0.0032 MSE: 0.0098 MSE: 0.0050

Time: 42.1 ms Time: 37.7 ms Time: 59.5 ms Time: 49.4 ms

Figure 5.17: The Plume and Explosion scenes, with roughly equal-time comparisons be-
tween the baseline and our method.
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mated Plume (Figure 5.17), the Amazon Bistro with a smoke plume (Figure 5.18), and the

Emerald Square with fog (Figure 5.18). These cover various uses: emissive lights, complex

environment lighting, volume self-emission, dynamic media, and volume-surface interac-

tions. We use isotropic scattering (g = 0), unless otherwise stated. In all cases, our method

significantly improves over the optimized baseline.

In real-time contexts, K provides an important performance knob, defining the al-

lowable scattering events. Due to costs in dense voxel grids (e.g., the bunny), we limit

evaluation in most scenes to K = 3. For K > 3, we apply Russian roulette after x3 to

stochastically terminate a random walk according to the albedo of the scattering point. We

do the same for terminating paths with the baseline. To produce equal-time comparison,

we choose the number of samples per pixel (spp) for the baseline method to make the

render time match our method. With each sample, the baseline method performs a random

walk up to K scattering events and it performs NEE at each bounce, just like our initial path

candidate generation. Note we only evaluate 1 spp per frame, in a Monte Carlo sense, but

we generate and reuse many samples as part of importance sampling.

Bistro (1 bounce) Emerald Square (1 bounce)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0189 MSE: 0.0158 MSE: 0.0309 MSE: 0.0201

Time: 44.7 ms Time: 47.4 ms Time: 75.7 ms Time: 72.1 ms

Figure 5.18: The Bistro and Emerald Square scenes, with roughly equal-time comparisons to
the baseline.
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Figures 5.16 and 5.17-top explicitly compare performance and quality in three scenes

with environment lighting using varying number of maximum scattering events (K = 1,

3, and 7). We sample the environment proportional to texel intensity. In all cases, our

approach significantly reduces error compared to equal-time baseline renderings.

In the Explosion scene with K = 2 and K = 4 scattering events, our method signifi-

cantly reduces the emission sampling noise compared to the baseline. This provides better

scattering quality (emissive voxels lighting other parts of the volume) as well.

For the Plume scene in Figure 5.17, our method significantly outperforms the baseline

with both single scattering and multiple scattering up to 7.

We show results of volume single scattering from light sources and surface direct light-

ing in the Bistro with over 20k emissive triangles and Emerald Square with around 90k

emissives (Figure 5.18), our work enables volumes to benefit from RIS and ReSTIR, similar

to surfaces [7]. Here, the baseline uses a light BVH [3] for light sampling, while our method

samples sources proportional to power. We show results with multiple scattering and

multiple-bounce surface-volume interreflection in Figure 5.1. Note that this significantly

increases render time, especially using multiple scattering. Profiler results reveal this stems

from thread divergence between ray tracing and volume tracking.

In all scenes, our method gives lower MSE than the baseline with approximately equal

or less time.

5.6.2 Participating Media with Different Densities

Our algorithm estimates transmittance using ray marching. Since path segments are

longer in low density volumes, our algorithm accesses more data for the same model size.

In Figure 5.19, we scale the density of the Disney Cloud to 0.2× and 3× of the original

for comparison. Our method’s cost grows 47% from 83.8 ms to 123.1 ms. In comparison,

the baseline method requires less time per sample, as decomposition tracking and residual

ratio tracking take larger average flight distances between null collisions (due to smaller

majorant).

At the lowest density, our method has slightly higher MSE than the baseline. Looking

closely shows this is caused by color noise, a limitation of ReSTIR [7] caused by using the

same scalar PDF to importance sample all color channels. We still achieve lower MSE for
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Low Density (0.2× default) Moderate Density (default) High Density (3× default)

Baseline Ours Reference Baseline Ours Reference Baseline Ours Reference
130.8 ms (14 spp) 123.1 ms 85.9 ms (7 spp) 83.8 ms 84.5 ms (4 spp) 76.2 ms

MSE: 0.0028 MSE: 0.0047 MSE: 0.0098 MSE: 0.0049 MSE: 0.0196 MSE: 0.0082

MSE: 0.0024 MSE: 0.0009 MSE: 0.0089 MSE: 0.0024 MSE: 0.0181 MSE: 0.0059

Figure 5.19: Comparing our method and the baseline in the same volume with different
density multipliers. Notice that lower density makes the execution time of our method
longer, while it reduces the time for each sample of baseline. We provide both color and
monochromatic images to show the impact of color noise. Images shown with 3-bounce
multiple scattering.

monochromatic images. At low densities, more background samples are produced. When

the background color differs strongly from the scattered light, color noise is amplified. This

is not bias; aggregating more frames reduces color noise (Figure 5.20) and converges to the

reference. Note that increasing the initial candidate count M does not reducing color noise,

as they all contribute our scalar target PDF, producing one integrand f whose chroma is

randomized.

Conversely, increasing media density speeds our algorithm and makes each baseline

sample more expensive. Note that we still have color noise, but its influence is smaller

than the remaining variance in the overall integral.

(a) 1 frame (b) 4 frames (c) 16 frames (d) Reference
Figure 5.20: Color noise decreases when accumulating multiple frames.
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5.6.3 Participating Media with High Anisotropy

To validate robustness with highly anisotropic phase functions, we change the Henyey-

Greenstein asymmetry parameter g to 0.8 in the Bunny Cloud, causing strong forward-

scattering (Figure 5.21 top). Our baseline, using only NEE, is outperformed by null scat-

tering [9], which combines residual ratio tracking in NEE with the radiance of escaped ray

(from free-flight sampling) using MIS; this is infeasible without null scattering. But our

method still outperforms null scattering, despite only using NEE for light samples.

But null scattering does not always outperform decomposition tracking. For an isotropic

phase function (g = 0) and complex lighting (Figure 5.21 bottom), the MIS in null scat-

tering may not yield better quality and it adds cost to each sample. As null scattering

generates fewer samples per pixel than our baseline for equal time, the sampling efficiency

becomes lower. Here our method significantly outperforms both methods, despite having

some color noise.

Note we could use MIS to sample candidate lights using the MIS weights for RIS [8].

Since our initial path generation operates with closed-form PDFs, we do not rely on the

null scattering formulation to compute MIS weights. However, this adds overhead to can-

didate generation. To discover when MIS is most effective requires further investigation.

5.6.4 Longer Time Convergence

To compare how error evolves with time, we accumulate frames of both our method

and baseline, comparing errors from 100 ms to 10 seconds (Figure 5.22). The Bunny Cloud,

Explosion, and Emerald Square scenes are selected as representative of high albedo scatter-

ing, emissive volumes, and mixed scenes with complex lighting.

The plots show our method consistently produces less error than the baseline. Note

that allowing more scattering events slows convergence in both methods. Scenes mixing

volumes and surfaces under complex lighting are also more challenging. The general

observation is that while producing lower error than the baseline, our longer term conver-

gence speed slows down for multiple scattering and complex surface scenes. Interestingly,

our long term convergence still shows clear advantage over the baseline for emissive

volumes with multiple scattering. Overall, our method is superior in 1–10s time range,

suggesting our approach may be applicable to previsualization for offline rendering.
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Baseline Null Scattering Ours Reference

Time: 99.6 ms
MSE: 0.0093

Time: 101.5 ms
MSE: 0.0078

Time: 96.2 ms
MSE: 0.0057

Time: 87.6 ms
MSE: 0.0103

Time: 88.2 ms
MSE: 0.0107

Time: 82.4 ms
MSE: 0.0091

Figure 5.21: Comparing our baseline (decomposition tracking[5] plus residual ratio
tracking[6]), a null scattering integration [9], and our method on a (top) highly anisotropic
Bunny Cloud (Henyey-Greenstein scattering coefficient g = 0.8). (Bottom) For comparison,
we show an isotropic Bunny Cloud under identical lighting. Images shown with 3-bounce
multiple scattering.

Figure 5.22: Comparing convergence between the baseline (blue) and our algorithm
(orange) using log-log plots showing MSE vs. render time from 0 to 10 seconds.

5.6.5 Comparison with Vertex Reuse

Section 5.4.2 notes we can either resample paths by reusing path vertices xi or by

reusing directions ωi. We chose to reuse directions; while costs are somewhat higher for

direction reuse, it reduces noise fairly significantly. This is because paths act a little like

virtual point lights under reuse, which leads to more singularities and fireflies. However, if

these could be reduced, it may make sense to switch back to vertex reuse for the improved

performance. See Figure 5.23 to compare visually between vertex and directional reuse.

5.6.6 Denoised Results

In Figure 5.24, we compare denoising applied to both our baseline and our resampling

technique (using both single scattering and 7-bounce multiple scattering); both using the

new OptiX [14] 7.3 temporal denoising mode, though recent work [154] may provide even
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(a) Vertex Reuse
Time: 83.8 ms
MSE: 0.0062

(b) Direction Reuse
Time: 95.9 ms
MSE: 0.0054

(c) Reference

Figure 5.23: Compare vertex and direction reuse. (We reuse directions.) Here we show
7-bounce multiple scattering in the Bunny Cloud scene.

Baseline (1 bounce) with denoising Ours (1 bounce) with denoising

Baseline (7 bounces) with denoising Ours (7 bounces) with denoising
Figure 5.24: The OptiX 7.3 denoiser (with temporal denoising) applied to both our baseline
and our method.

better denoising quality. While OptiX produces amazingly denoised results in both cases,

the better sampling provided by our technique preserves much higher frequency details in

the animation, while the baseline gives a smoother, more washed out look. Part of this is

also due to the improved motion vectors we provide with our novel temporal reprojection

plus velocity resampling. The supplementary video of our SIGGRAPH Asia 2021 paper

compares the denoised results under animation.
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5.7 Conclusion
We introduced a sampling solution extending resampled importance sampling [8] and

ReSTIR [7] to path space, enabling real-time rendering of heterogeneous volumes in com-

plex lighting environments. Resampling exposes new user-defined target PDFs in each

reuse step. By adjusting these target PDFs, even with biased or approximate distributions,

we can dramatically improve the distribution quality used to select our final pixel samples.

Beyond the prior resampling work, our approach extends resampling to multi-bounce

paths on surfaces and in volumes, mixes path samples of varying lengths, and shows how

transmittance estimates of increasing fidelity can be injected over multiple resampling

steps. We jointly sample multiple dimensions during resampling; free-flight distances and

scattering directions are mixed together, unlike prior work [7] that exclusively considers

directions. We demonstrate an efficient GPU implementation that outperforms state-of-

the-art.

Our work inherits some limitations of prior resampling [7] techniques. For instance,

we exploit coherence between samples and perform poorly where no coherence exists.

Specifically, high frequency variations (e.g., of lighting, density, motion) limit coherence

across boundaries, increasing nearby variance.

Additionally, our work uses scalar target functions. This samples chroma channels

identically, leaving color noise (e.g., Figure 5.19). Such noise is usually minor, except in

scenes with different, highly-saturated lights. Using separate target functions per channel

avoids this issue, but at substantial cost. Exploring efficient sampling to reduce color noise

is interesting future work.

For sampling emission, a line integral which effectively combines our method with the

FNEE method [93] may more efficiently collect radiance.

Another issue is the relative high cost for initial candidates and target function evalua-

tion inside media, compared to Bitterli et al. [7]. Coarse volumes reduce cost at the expense

of quality, less accurately approximating target functions. Future work may explore adap-

tive representations or ray marching to speed computations while minimizing quality loss.

Such improvements will accelerate our work, enabling fast, many-bounce global lighting

in the presence of complex lighting, volumes, and surfaces.

As in most modern real-time renderers, our volume rendering system provides input
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to a denoiser. But spatiotemporal reuse can introduce correlations in the noise, a character-

istic not handled well by existing denoisers (e.g., in OptiX [14]). Finding additional ways

to decorrelate the noise or better adapt the denoiser are interesting future directions.



CHAPTER 6

GENERALIZED RESAMPLED IMPORTANCE

SAMPLING1

As scenes become ever more complex and real-time applications embrace ray tracing,

path sampling algorithms that maximize quality at low sample counts become vital. Re-

cent resampling algorithms building on resampled importance sampling (RIS) [17] reuse

paths spatiotemporally to render surprisingly complex light transport with a few samples

per pixel. These reservoir-based spatiotemporal importance resamplers (ReSTIR) and their

underlying RIS theory make various assumptions, including sample independence. But

sample reuse introduces correlation, so ReSTIR-style iterative reuse loses most convergence

guarantees that RIS theoretically provides. 1

In this chapter, we introduce generalized resampled importance sampling (GRIS) to

extend the theory, allowing RIS on correlated samples, with unknown PDFs and taken

from varied domains. This solidifies the theoretical foundation, allowing us to derive

variance bounds and convergence conditions in ReSTIR-based samplers. It also guides

practical algorithm design and enables advanced path reuse between pixels via complex

shift mappings.

We prototype a path-traced resampler (ReSTIR PT) that runs interactively on complex

scenes, capturing many-bounce diffuse and specular lighting while shading just one path

per pixel (Figure 6.1). With our new theoretical foundation, we can also modify the algo-

rithm to guarantee convergence for offline renderers.

1D. Lin, M. Kettunen, B. Bitterli, J. Pantaleoni, C. Yuksel, and C. Wyman, “Generalized resampled impor-
tance sampling: Foundations of ReSTIR,” ACM Transactions on Graphics (TOG), vol. 41, no. 4, to appear,
2022.
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Path Tracing

ReSTIR GI

Ours

Ground Truth

Path Tracing

ReSTIR GI

Ours

Ground Truth

Path Tracing

ReSTIR GI

Ours

Ground Truth

Path Tracing

ReSTIR GI

Ours

Ground Truth

Figure 6.1: Our new generalized resampled importance sampling (GRIS) theory extends
resampled importance sampling [8] to guarantee convergence even when applied to cor-
related samples arising from spatiotemporal reuse (i.e., Bitterli et al. [7]). GRIS allows
applying ReSTIR to reuse arbitrary paths, shown with paths of length 10 in the Carousel
(top) and Paris Opera House (bottom). Main images compare naive path tracing and our
new ReSTIR PT in equal time (80 ms at 1920 × 1080). Insets show equal-time path tracing,
ReSTIR GI [10], our ReSTIR PT, plus a converged reference. We significantly improve
quality for glossy interreflection, reflections, refractions, and other high-frequency light-
ing. For Carousel, MAPE errors: path tracing (1.63), ReSTIR GI (0.45), and ReSTIR PT (0.39).
Corresponding errors in Opera House: 1.28, 0.39, and 0.33. (Carousel ©carousel_world; Paris
Opera House courtesy ©GoldSmooth from TurboSquid.)

https://www.turbosquid.com/Search/Artists/GoldSmooth
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6.1 Introduction
Monte Carlo algorithms form the core of modern rendering. While originally only

feasible in offline renderers, ray-tracing hardware [13] has made such algorithms practical

in real-time systems as well. However, strict real-time constraints in games limit feasible

per-frame ray counts [155], giving many modern real-time path tracers budgets of at most

one path per pixel.

Importance sampling reduces variance at low sample counts by improving sample

distributions. But this becomes challenging for complex global lighting, e.g., Figure 6.1,

where sampling from optimal distributions is impossible. Path guiding aims at on-line

learning of complex distributions, but requires updating complex data structures [110] or

neural models [156].

A new family of algorithms based on resampled importance sampling (RIS) [8] instead

continually evolves a population of samples towards their optimal distribution via sample

reuse within and across frames. Ideally, each sample converges to its “perfect” impor-

tance distribution given sufficient reuse. Such reservoir-based spatiotemporal importance

resampling (ReSTIR) algorithms work for direct lighting [7], global illumination [10], and

volume scattering [157]. ReSTIR leverages GPU parallelism via a streaming algorithm,

reducing error up to 100× compared to equal-time renderings without reuse.

However, convergence of these randomized distributions is poorly studied. Nabata

et al. [158] approximate convergence for Talbot RIS with an upper bound, but only without

sample reuse between pixels. Bitterli et al. [7] show these distributions are unbiased, but do

not prove they converge in all circumstances.

In fact, in Figure 6.2 we show a trivial example where sample reuse, despite being

unbiased, converges to a wrong result.

Ultimately, ReSTIR ignores a key issue: RIS assumes independent and identically dis-

tributed (i.i.d.) samples, often from a single source distribution. Reuse violates this in-

dependence, and ignoring the assumption slows convergence or causes divergence. Prior

work empirically suggests sufficiently small correlation does not impede convergence [7,

10, 157, 159]. But it remains unclear if and when their correlation minimization efforts

(e.g., randomizing reused spatial neighbors) guarantee convergence. When resampling for

more complex lighting, maintaining sufficient decorrelation may be impossible without a
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Figure 6.2: Imagine a two-pixel image, with ReSTIR [7] separately integrating two 1D
functions (left). ReSTIR promises exponential growth in “effective” sample count at linear
cost, but each ReSTIR iteration only adds two new independent samples; the rest of the
exponential growth are duplicates. This makes the algorithm converge to the wrong result
(right). Our GRIS theory explains when such cases occur and how to guarantee proper
convergence.

deeper theoretical understanding.

We introduce generalized resampled importance sampling (GRIS), a new theoretical frame-

work that lifts the i.i.d. assumption and helps understand, design, and discuss conver-

gence for complex samplers, like ReSTIR. With GRIS, we can apply resampling to combine

correlated candidate samples, drawn from potentially different domains and mapped to

estimate a single integral (see Section 6.3).

Many derivations in Talbot [8] and Bitterli et al. [7] are special cases of our theory;

we generalize prior work while proving conditions under which ReSTIR is unbiased and

consistent.

Our main contributions include that we:

• Derive RIS with paths from other pixels by shift mappings,

• Give conditions for unbiasedness and convergence,

• Derive MIS weights satisfying the convergence constraints and help minimize vari-

ance, (Section 6.3.4),

• Explain how some prior ReSTIR design decisions, e.g., M-capping, are vital for en-

suring convergence (Section 6.5.4),
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• Show proper shift mappings help control noise when spatiotemporally reusing paths

(Section 6.6),

• Design shift mappings with improved performance and quality by BSDF lobe spe-

cific connections (Sections 6.6.5 and 6.6.6),

• Apply GRIS theory to derive our ReSTIR PT that can reuse paths e.g., through glass.

Specifically, to guarantee convergence (see Section 6.4) when integrating a function f ,

one must:

• Use correct MIS weights during sample reuse,

• Select the target function p̂ so f / p̂ is not arbitrarily large,

• Control samples’ resampling weights wi so Var [∑ wi]→0,

• Ensure sufficient sample count across f ’s domain, specifically to have enough “canon-

ical” samples (see Section 6.4.5), and

• When temporally resampling, use a reasonable M-cap to limit correlations between

frames.

With our new theory and shift maps, we more efficiently reuse samples, obtaining a robust,

unbiased light transport algorithm that can handle even very complex lighting scenarios

while remaining fully amenable to efficient GPU parallelization and real-time use (see

Figure 6.1). We also show that, without temporal resampling, ReSTIR can further be used

to largely accelerate offline renderers.

While many proofs and derivations reside in Appendix B, Sections 6.3 and 6.4 remain

mathematically dense. We have unlined key results throughout, and starred sections (�)

skippable by readers less interested in theory. For engineers, we suggest reading through

Section 6.3.1 and then skipping to Section 6.6.

6.1.1 Chapter Roadmap

Table 6.1 shows a summary of notation used in this chapter.

In Section 6.2, we briefly review the state-of-the-art in resampled importance sampling

theory and motivate the need for extending it.
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Table 6.1: Summary of notation in the chapter

x, y A general input to a function
x̄, xi A path and a vertex i on the path
Ωi Domain from which samples are drawn
Ω Domain of integration of our function f
Xi Input sample for RIS, often a sequence (Xi)

M
i=1

Y Sample Y selected via RIS
(Y=Xs in the simple case or Y=Ts(Xs) in general)

M, N Number of input and output samples for RIS
pX(·) Probability density of random variable X at a location
p(·) Shorthand for the above when the random variable is clear
p̂(·) Unnormalized target distribution (we aim to select Y ∝ p̂)
p̄(·) Normalized target PDF (i.e., p̄ = p̂/‖ p̂‖1)
f (·) Function to integrate (e.g., the path contribution function)
gi(·) A contribution function for Xi ∈ Ωi to integrate f in Ω
Wi Unbiased contribution weights; estimate reciprocal PDFs
wi Resampling weights; RIS selects one Xi based on wi/ ∑ wj
ci Contribution MIS weights; prior works’ MIS weights
mi Our new resampling MIS weights

Ti(·) A shift mapping; maps samples from domain Ωi to Ω∣∣∣ ∂Ti
∂x

∣∣∣ Jacobian of shift mapping Ti

p̂←i(·) “p̂ from i.” Generalizes p̂ to include shift maps from Ωi
C Various constants, as bounds in convergence proofs

R, |R| Canonical samples and their number

In Section 6.3, we present our new generalization of RIS to resample from multiple

input domains Ωi into a target domain Ω, using shift maps Ti : Ωi →Ω analogous to those

in gradient-domain rendering. We establish conditions under which GRIS unbiasedly inte-

grates any function f defined over Ω, and conditions ensuring output sample distributions

converge to the specified target resampling PDF p̄.

In Section 6.4, we show integration error directly relates to the variance of a RIS normal-

ization factor. When this variance disappears, GRIS becomes a zero-variance integrator.

We can achieve this by taking additional samples from the current, canonical pixel (not just

from distant neighbors), and using robust resampling MIS weights.

By configuring ReSTIR to obey the GRIS convergence constraints, in Section 6.5, we

observe it becomes a non-Markovian chain, forever exploring path space with one sample

per pixel. In a still scene, averaging frames converges, and real-time usage gives a single

state of the chain each frame. Cross-frame correlations hinder convergence for offline
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rendering, but spatial reuse remains beneficial.

Section 6.6 designs shift mappings for cross-pixel path reuse, and presents several

new shift modifications to improve efficiency. Section 6.7 discusses our implementation

of ReSTIR PT, and Section 6.8 presents results and experimental validation.

Appendix B contains mathematical proofs and derivations, additional analysis, and

more details about our implementation.

6.2 Resampled Importance Sampling Review
Before introducing GRIS in Section 6.3, we first review resampled importance sampling

(RIS) using the notation and terminology of our generalized theory. Figure 6.3 highlights

differences between existing theory, e.g., Talbot [8], and our new generalization.

The RIS Algorithm
Talbot et al.

[17]
Identically

distributed samples

Talbot [8]
Differently

distributed samples

GRIS [Ours]
Correlations & different

source domains

1. Generate M initial
candidate samples:
(X1, . . . , XM)

Samples from
same domain:

Xi ∈ Ω with same
PDF p

Samples from
same domain:
Xi ∈ Ω with

different PDF pi

Samples from arbitrary
domains: Xi ∈ Ωi;

intractable pi are OK

2. Evaluate their
unbiased contribution
weights: Wi

Wi = 1/p(Xi) Wi = 1/pi(Xi)
Wi must unbiasedly
estimate 1/pi(Xi)

3. Evaluate their
resampling weights:
wi

wi =
1
M p̂(Xi)Wi wi = mi(Xi) p̂(Xi)Wi

wi = mi(Ti(Xi)) p̂(Ti(Xi))
·Wi |∂Ti/∂Xi|

4. Select s
proportionally to wi
and output Y in Ω

Simply output:
Y = Xs

Simply output:
Y = Xs

Output sample mapped
from Ωi to Ω:

Y = Ts(Xs)

Figure 6.3: We generalize Talbot’s [8] resampled importance sampling in various ways.
(Red) Basic RIS assumes i.i.d. samples Xi, all drawn with one PDF p from the domain Ω
of integrand f . (Blue) More advanced forms allow candidates with different PDFs pi(X),
adding MIS terms mi to remain unbiased. Sample reuse, as in ReSTIR [7], adds correlations
between candidate samples Xi and requires using unbiased estimates of 1/pi(Xi) for Wi.
But current theory fails to guarantee convergence in these cases (e.g., Figure 6.2). (Green)
Our new theory corrects this, providing convergence guarantees even with correlated
candidate samples Xi from arbitrary domains Ωi and differing, intractable PDFs pi. The
unbiased estimate for the integral of f is f (Y)WY in all cases, with WY defined in Equa-
tion 6.2.
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6.2.1 Identically Distributed Samples

Basic RIS takes as input a sequence of independent and identically distributed (i.i.d)

random samples (Xi)
M
i=1 in some domain Ω, distributed with known PDF p. The goal is

to randomly pick Y from the sequence so that its PDF, pY, constitutes a better importance

sampler for integrating function f over Ω.

More precisely, we define a non-negative target function p̂ and choose Y randomly

such that, as the input sample count M grows, the realized PDF pY better and better

approximates a normalized p̂ (i.e., pY approximates p̄(x) = p̂(x)/‖ p̂‖1).

Algorithmically, from inputs Xi we select one, Y = Xs, with probability Pr [s= i] =

wi/ ∑M
j=1 wj, using resampling weights wi. Prior work defines wi as p̂(Xi)/p(Xi) (e.g.,

Bitterli et al. [7], Eq. 5). As weights are relative, selection probability is invariant to

multiplicative constants, and we define

wi =
1
M

p̂(Xi)Wi and Wi =
1

p(Xi)
(6.1)

for notational consistency. The PDF of the selected sample Y is intractable, but its unbiased

contribution weight

WY =
1

p̂(Y)

M

∑
i=1

wi (6.2)

can be used in place of 1/pY(Y) (e.g., Bitterli et al. [7], Eq. 12). Assuming pY > 0 where

f > 0, i.e., supp f ⊂ supp Y, we have

∫

Ω
f (x)dy = E [ f (Y)WY] . (6.3)

Given appropriate constraints, pY converges to p̄ and the variance Var [ f (Y)WY] asymptot-

ically approaches the variance expected if Y had PDF exactly p̄. Choosing p̂ proportional

to f guarantees the estimate f (Y)WY is, asymptotically, zero-variance.

6.2.2 Differently Distributed Samples

If the samples Xi have different PDFs pi, the situation becomes more complex. This

requires what we call resampling MIS, a partition of unity with weights mi, for mi ≥ 0 and

M

∑
i=1

mi(x) = 1 (6.4)
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for all x in p̂’s support. Talbot [8] proposes weights analogous to Veach’s [160] balance

heuristic,

mi(x) =
pi(x)

∑M
j=1 pj(x)

. (6.5)

The key algorithmic change is then replacing the 1/M term in wi (Equation 6.1) with these

MIS weights (see Figure 6.3, blue column), i.e.,

wi = mi(Xi) p̂(Xi)Wi and Wi =
1

pi(Xi)
. (6.6)

Assuming at least one PDF pi covers each x∈supp p̂, Equation 6.3 holds with WY from

Equation 6.2 using these updated wi. Convergence requires more assumptions than in

Section 6.2.1, but is achievable (e.g., Section 6.4.7).

6.2.3 Why Generalize Resampling?

Early applications of RIS, e.g., for BSDF importance sampling, aim to choose a p̂ that

cheaply approximates f so that resampling from multiple cheaply generated candidates

speeds convergence.

ReSTIR, however, reuses samples across pixels to amortize costs for simultaneous esti-

mation of multiple integrals. With this goal, p̂ need not be simpler than f , if reusing prior

samples is cheaper than generating a new one. ReSTIR also gains efficiency if a reused

sample’s PDF better approximates the target integrand. Due to iterative use of RIS, in such

cases, using p̂= f may be reasonable, especially for complex paths (e.g., Lin et al. [157]).

Talbot’s RIS theory assumes independent samples Xi lying in a shared domain Ω.

ReSTIR stretches these assumptions, so it may not retain any theoretical convergence guar-

antees. In fact, with seemingly innocuous algorithmic modifications, correlated reuse can

cause convergence to a wrong result.

6.3 Generalized RIS
Our generalized resampled importance sampling (GRIS) allows mapping samples be-

tween domains and identifies the constraints for which this is unbiased and converges.

Unlike traditional RIS, which selects from independent samples in one domain, we

allow potentially correlated inputs (Xi)
M
i=1 from different domains Ωi. Generalized RIS

randomly selects sample Xs and maps it to f ’s domain Ω via a shift mapping, Y = Ts(Xs),

so that the PDF of Y approaches target p̄ (i.e., a normalized p̂).
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6.3.1 Overview

Before delving into theoretical details for our generalization, we briefly overview our

approach and relate it to traditional RIS.

We assume input samples Xi, perhaps from varying domains Ωi, need not be indepen-

dent and are paired with unbiased contribution weights Wi ∈R that can replace 1/pi(Xi)

for integration. This explicitly allows prior resampled inputs; while a resampled input

Xi has an intractable PDF pi, its weight Wi is tractable (i.e., Equation 6.2). We formalize

unbiased contribution weights in Section 6.3.2.

To reuse samples to integrate f over Ω, we must map our random samples Xs ∈ Ωs

into Ω with a shift mapping Ts : Ωs →Ω. This shift modifies the PDF via the PDF transfor-

mation laws,2 requiring the shift map’s Jacobian determinant, |∂Ti/∂x|. We formalize shift

mappings in Section 6.3.3.

Algorithmically, this changes various aspects of RIS (see Figure 6.3, green column).

We must transform samples to a common domain Ω, so resampling weights include shift

maps Ti and their determinants:

wi = mi(Ti(Xi)) p̂(Ti(Xi))Wi · |∂Ti/∂Xi| . (6.7)

We do not require tractable pi; we may use Wi = 1/pi(Xi), but we may also use numerical

contribution weights Wi from e.g., a prior RIS pass (Equation 6.2). Before using the selected

sample for integration (or further resampling), we must shift it to the appropriate domain,

i.e., our output sample is Y = Ts(Xs).

Unbiased contribution weights WY for output Y are again given by Equation 6.2. With

the constraints we derive below, pY converges to p̄ such that Var[ f (Y)WY] is guaranteed

to approach Var[ f (Y)/ p̄(Y)]. This achieves asymptotic zero-variance integration with a

single Y if p̂ ∝ f .

6.3.2 Unbiased Integration with Generalized RIS

Again, we assume potentially correlated input samples (Xi ∈ Ωi)
M
i=1 with arbitrary

source domains Ωi. Furthermore, samples Xi must be paired with unbiased contribution

weights Wi, acting as replacements for potentially intractable reciprocal PDFs 1/pi(Xi).

2With y = T(x), we have PY(y) =
∣∣∣ ∂P

∂y

∣∣∣ =
∣∣∣ ∂P

∂x

∣∣∣
∣∣∣ ∂x

∂y

∣∣∣ = PX(x)
∣∣∣ ∂T

∂x

∣∣∣−1
.
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We first derive an unbiased integrator for function f over domain Ω, assuming al-

most arbitrary resampling weights wi. In Section 6.3.4, we replace these arbitrary wi with

weights that lead to asymptotic convergence to the target PDF p̄.

We formally define unbiased contribution weights Wi as follows:

Definition 6.3.1. An unbiased contribution weight W∈R for a random variable X∈Ω is any

real-valued random variable W for which

E [ f (X)W] =
∫

supp(X)
f (x)dx (6.8)

for any integrable function f : Ω → R.

The expression f (X)W generalizes the ratio f (X)/p(X) in Monte Carlo integration: if

p is tractable, we can use W = 1/p(X). If not, as when picking X with RIS, these weights

still allow unbiased integration. The integral is naturally limited to where p > 0, i.e.,

supp(X). Similar definitions have been used outside computer graphics, e.g., Liang and

Cheon [161].

Unbiased contribution weights naturally replace the reciprocal of the marginal PDF; in

fact, they unbiasedly estimate it,

E [W | X] =
1

pX(X)
. (6.9)

This is not coincidence, but equivalence. Any unbiased estimator for the inverse marginal

PDF (Equation 6.9) is an unbiased contribution weight (Equation 6.8) and vice versa (The-

orem A.1).

In RIS, we resample Xi proportionally to wi. We need to express the contribution of

chosen sample Xs that gives an unbiased estimate for the integral of f . To do this, we start

by assigning each sample Xi a corresponding contribution function gi : Ωi → R that gets

evaluated if selecting index s = i.

We then look at the expectation of gs(Xs)Ws divided by the RIS selection probability of

index s. The PMF of the selection index is ps(i) = wi/ ∑M
j=1 wj, and with some caution,3 we

get

3Technically, this equation requires that wi > 0 whenever gi(Xi) �= 0, but we will later introduce a partition
of unity that lifts this requirement.
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E

[
gs(Xs)Ws

ps(s)

]
= E

[
M

∑
i=1

gi(Xi)
�
��ps(i)

�
��ps(i)

Wi

]
=

=
M

∑
i=1

∫

supp(Xi)
gi(xi)dxi, (6.10)

The first step expands the expectation as a sum over the possible cases, and the second

step utilizes the definition of unbiased contribution weights to transform the sum of ex-

pectations into a sum of integrals. RIS naturally skips sampling areas where the random

variables have zero PDF, limiting integration to the supports of Xi. Equipped with this

result, we can now proceed to transform the remaining sum of integrals into the desired

integral of f by carefully choosing unknowns gi.

Choosing gi so the right-hand-side becomes the integral of f yields an unbiased con-

tribution for the selected sample Y = Xs. In the special case that Xi are all from the same

domain Ω and support S, and all wi are positive in S, we can recover basic RIS by choosing

gi =
1
M f for all i, giving:

E

[
1
M

f (Y)
∑M

j=1 wj

ws
Ws

]
=

∫

supp(Y)
f (x)dx. (6.11)

Comparing to Equation 6.8, we observe that in this restricted case the expectation is of

form E[ f (Y)WY] with

WY =
1
M

∑M
j=1 wj

ws
Ws, (6.12)

making WY an unbiased contribution weight for Y, i.e., E[ f (Y)WY] integrates any function

f over the support of Y. In Section 6.3.3, we extend our result to samples Xi coming from

multiple domains Ωi.

• Degenerate case. If all wi are 0, no sample is selected and the contribution is zero.

Intuitively, one may think of returning a zero-contribution null-sample Y∅ outside the

sampling and integration domains (i.e., p̂(Y∅) = f (Y∅) = 0). The value of WY∅ is then

irrelevant, and can be set to zero.

6.3.3 Shift Mapping

In GRIS, samples Xi may originate from arbitrary domains Ωi. To integrate f : Ω→R

with samples Xi ∈ Ωi, we must transform the right-hand side of Equation 6.10 into the

integral of f . To do this, we choose gi that map Xi from Ωi to Ω and evaluate f at the

result.
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Since a map from Ωi to Ω changes the variables of integration, it must be bijective.

Mappings between complicated domains can be non-trivial to construct, so we settle for a

bijection from a subset of Ωi to its image in Ω. As in prior work (e.g., Manzi et al. [162]),

we call such bijections shift mappings, Ti, and associate one with each domain Ωi.

Definition 6.3.2. A shift mapping Ti from Ωi to Ω is a bijective function from a subset

D(Ti) ⊂ Ωi to its image I(Ti) ⊂ Ω.

Intuitively, we should choose contribution functions

gi(x) = ci(yi) f (yi)

∣∣∣∣
∂Ti

∂x

∣∣∣∣ , (6.13)

where yi is shorthand for Ti(x), contribution MIS weights ci : Ω → R are an arbitrary

partition of unity ∑M
i=1 ci(y)= 1 for y∈Ω, and

∣∣∣ ∂Ti
∂x

∣∣∣ is the Jacobian determinant of x �→ yi.

In principle, this implements

M

∑
i=1

∫

Ωi

gi(x)dx =
∫

Ω
f (x)dx, (6.14)

but care is required in the details; e.g., Equation 6.13 is not defined for x /∈ D(Ti). We fix

this by defining gi(x) = 0 for x /∈ D(Ti) and updating the contribution MIS weights ci to

compensate.

We assume weights wi are arbitrary non-negative random variables related to target

function p̂ as follows: wi > 0 iff Xi ∈ D(Ti) and p̂(Yi) > 0. Essentially, wi > 0 when

Yi = Ti(Xi) exists and is in the support of p̂, otherwise wi = 0 to avoid choosing Xi. Later,

we slightly relax this constraint.

Under these assumptions, each possible Y must be in supp p̂ and be samplable as

Y = Ti(Xi) by one or more Xi that has positive PDF (i.e., Xi ∈ supp Xi), and vice versa.

Mathematically,4

supp Y = supp p̂ ∩
M⋃

i=1

Ti(supp Xi). (6.15)

This implies supp Y ⊂ supp p̂. Later, we assume supp p̂ ⊂ supp Y, which also implies

supp Y = supp p̂.

4If supp Xi is larger than the domain of Ti, we set Ti(supp Xi) = Ti(supp Xi ∩D(Ti)).
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Carefully substituting the above gi, with gi(x) = 0 if x /∈ D(Ti), into the left-hand side

of Equation 6.10, this gives the equality

E

[
cs(Y) f (Y)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣
∑M

j=1 wj

ws
Ws

]
=

∫

supp(Y)
f (x)dx, (6.16)

where Ws is the unbiased contribution weight of Xs.

The constraints that contribution MIS weights ci must fulfill for this to hold are that for

all y ∈ supp Y,
M

∑
i=1

y∈Ti(supp Xi)

ci(y) = 1. (6.17)

Interpret this as: every realizable y, possibly from multiple Ωi, must be covered exactly

once in total. The summation only accounts for domains Ωi from which y can be realized

as y = Ti(xi) with non-zero PDF. In principle, negative values of ci work, but later we find

that only ci ≥ 0 allow chaining multiple passes of GRIS.

Again, the expectation in Equation 6.16 is of the form E[ f (Y)WY] for arbitrary inte-

grable function f in Ω, and the right-hand side integrates f over the support of Y, per the

definition of unbiased contribution weights in Equation 6.8. This means that with

WY = cs(Y)
(

Ws

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣
) [

∑M
j=1 wj

ws

]
, (6.18)

f (Y)WY unbiasedly estimates the integral of f over the support of Y, and that WY is an

unbiased estimate for 1/pY(Y).

This specifies when generalized RIS can integrate an arbitrary function f : when the

supports of random variates Xi (mapped to Ω via Ti) together cover the support of f .

This is automatically fulfilled if we choose one sampling domain, say Ω1, as f ’s domain,

use the identity shift T1(x) = x on Ω1, and generate X1 with an importance sampler

designed for the integrand f , i.e., so that p(x1) > 0 whenever f (x1) > 0; we will later

call such samples canonical. Since pX1 is known, we can use the unbiased contribution

weight W1 = 1/pX1(X1).

We later show earlier ReSTIR samplers can, a posteriori, be built on these observations,

but first Section 6.3.4 covers how to realize convergence to target density p̄ by setting wi

with Equation 6.19. The corresponding WY is then given by Equation 6.22.
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• Relaxing constraints �. The condition that wi > 0 when p̂(Yi) > 0, for Yi = Ti(Xi),

can be relaxed by also allowing wi = 0 when ci(Yi) = 0 or Wi = 0, i.e., when the expec-

tation does not change. The validity of Equation 6.17 must be explicitly guaranteed in

supp p̂ ∩ ⋃
i Ti(supp Xi) to make Equation 6.15 hold. We derive these constraints and the

unbiasedness of the estimator in Section B.3.1. Using the wi from the next section removes

the need for these constraints.

6.3.4 Asymptotically Perfect Importance Sampling �

Above, we generalized RIS to multiple domains for unbiased integration with near-

arbitrary weights. Like Talbot’s RIS, the goal of GRIS is producing samples following a

desired distribution; we want the marginal probability density pY of output sample Y to

converge to p̄ as the input sample count approaches infinity.

We show this occurs with the following resampling weights:

wi =

{
mi(Ti(Xi)) p̂(Ti(Xi))Wi ·

∣∣∣ ∂Ti
∂Xi

∣∣∣ , if Xi ∈ D(Ti)

0, otherwise
, (6.19)

given resampling MIS weights mi and unbiased contribution weights Wi. As normalizing

wi gives resampling probabilities, wi must be non-negative. It follows that mi and Wi must

also be non-negative (proofs in Section B.3.2), which we assume hereafter.

Weight wi will be zero outside of supp p̂, as p̂ = 0. Requirements for mi are similar to

those for ci. For all y in supp Y,

M

∑
i=1

y∈Ti(supp Xi)

mi(y) = 1, (6.20)

but we also require mi ≥ 0. The sum only includes indices that can generate y with a

positive PDF. Unbiased integration also requires mi(y) > 0 whenever ci(y) �= 0 so the mi

do not invalidate the partition of unity formed by ci (proof in Section B.3.3).

Directly substituting wi from Equation 6.19 into Equation 6.18 yields the unbiased

contribution weight for new sample Y,

WY =

[
cs(Y)
ms(Y)

]
1

p̂(Y)

M

∑
j=1

wj. (6.21)

The condition that mi(y) > 0 when ci(y) �= 0 now naturally avoids division by zero. Next,

we show that choosing mi = ci is ideal, naturally fulfilling this requirement.
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WY in Equation 6.21 has multiple sources of variance. The sum ∑M
j=1 wj varies with

inputs Xj and ratio cs(Y)/ms(Y) varies with index s. Asymptotically approaching the

desired sample density p̄ requires the sum variance Var[∑M
j=1 wj] to approach zero. Even

if fixing this sum as a constant, ratio cs(Y)/ms(Y) can add significant variance. This

disappears by selecting ci(y) = mi(y).

Our improved and simpler unbiased contribution weight for GRIS becomes

WY =
1

p̂(Y)

M

∑
j=1

wj, (6.22)

which we used to reformulate traditional RIS (Equation 6.2) to prepare for this generaliza-

tion. We use this expression for WY hereafter.5

This allows deriving Theorem A.2 in Section B.1, which guarantees asymptotic con-

vergence of pY, the PDF of resampled Y, to p̄: consider the behavior of a sequence of

resampling results YM (with supp p̂ ⊂ supp YM) as M increases. If variance of the summed

resampling weights goes to zero,

Var

[
M

∑
i=1

wM,i

]
M→∞−−−→ 0, (6.23)

then p̄(Y)/pY(Y) converges to 1 in the mean-square sense.6 This sum approximates the

integral of p̂:

E

[
M

∑
i=1

wi

]
= E [ p̂(Y)WY] =

∫

supp Y
p̂(y)dy = ‖ p̂‖. (6.24)

Increasing input sample count M adds more terms to the sum; this tends to make each wi

smaller. Convergence of pY to p̄ is subject to ∑M
i=1 wi approaching ‖ p̂‖ as Var

[
∑M

i=1 wi

]
−→

0, i.e.,

WY =
1

p̂(Y)

M

∑
j=1

wj ≈
‖ p̂‖
p̂(Y)

=
1

p̄(Y)
for large M . (6.25)

The guarantee from Equation 6.23 is quite strong. While convergence of pY to p̄ may

not be pointwise (new samples may introduce temporary fluctuations), the probability of

5The unbiased contribution weights in Equation 6.22 skip the division by M often seen in RIS and ReSTIR
formulas, as our weights wj already include this factor in the resampling MIS weights mi (Equation 6.19);
selecting mi = 1/M gives the prior formulations.

6Mathematically, this means E

[∣∣∣ p̄(YM)
pY(YM)

− 1
∣∣∣2
]

M→∞−−−→ 0.
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errors of any given size approaches zero, and each subset of Ω will, asymptotically, receive

the correct ratio of samples.

In addition, as shown in Section 6.4.2, integration variance also goes to zero (if p̂ ∝ f ),

i.e., in the limit we get the variance expected if Y were exactly distributed with target PDF

p̄.

6.4 Convergence and Variance Analysis �
Above we presented a new GRIS theory and conditions for asymptotic convergence to

a target distribution, but we have yet to discuss its asymptotic behavior as an integral es-

timator, particularly for Monte Carlo sampling. As infinite sample counts are impractical,

we also want to analyze variance when using finitely many samples.

6.4.1 Reasonable Distributions �

Before studying variance, we start by formally defining a reasonable importance sam-

pling distribution:

Definition 6.4.1 (Reasonable distribution). We say a PDF p is a reasonable importance

sampling distribution for a non-negative function f (or p is reasonable for [integrating] f )

if a bound Cf exists such that

f (x) ≤ Cf p(x) for all x. (6.26)

We also say a random variate X with unbiased contribution weight WX is reasonably

distributed for f , if there exists a bound Cf

f (X)WX ≤ Cf with probability 1. (6.27)

Essentially, a reasonable distribution guarantees bounded Monte Carlo contributions.

In standard Monte Carlo, f (X)/p(X) ≤ Cf , and for importance sampling with unbiased

contribution weights, f (X)WX ≤ Cf .

6.4.2 Asymptotic Variance of Integral Estimation �

Asymptotic convergence of distribution pY naturally gets reflected in integration vari-

ance. Assuming p̄ is a reasonable distribution for function f , then the unbiased integral

estimate f (Y)WY asymptotically has variance due only to any mismatch of p̄ and f . If
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p̂ is chosen proportional to f , then p̄ ∝ f and estimate f (Y)WY will be asymptotically

zero-variance.

We formalize this in Theorem A.3. Convergence of pY to p̄ is provided by Theorem A.2,

and if 0 ≤ f ≤ Cf p̂ for some Cf > 0, then

Var [ f (Y)WY]
M→∞−−−→ Var

[
f (X)

p̄(X)

]
, (6.28)

where X has density p̄. The zero-variance result follows naturally if f (x)/ p̄(x) is constant.

A key takeaway is that if p̂ is not proportional to f , increasing the input sam-

ple count eventually leads to diminishing returns; further variance reduction requires

choosing a p̂ better matching f .

6.4.3 Variance in the Finite Case �

Above, we studied the asymptotic behavior of GRIS as sample count increases without

bound. In practice, we are limited to finite M, so we aim to minimize variance in some

computation budget. Fortunately, we may give explicit variance bounds for our integral

estimate:

Theorem 1. With the assumptions of Theorem A.3,

Var [ f (Y)WY] ≤ Var
[

f (X)

p̄(X)

]
+ b, (6.29)

where X is distributed with density p̄ and

b = C2
f Var

[
M

∑
i=1

wi

] 1
2

‖ p̂‖+ 2 Var

[
M

∑
i=1

wi

] 1
2

 . (6.30)

Proof. Section 6.4.3.

Here, Cf is the bounding constant for a reasonable distribution p̂ for f . Theorem 1 says

resampling converges to p̄ by decreasing Var[∑M
i=1 wi], which acts as a concrete proxy for

the current convergence state. As Var[∑M
i=1 wi] approaches zero, remaining variance stems

from potential mismatches between p̂ and f .
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The law of total variance provides another decomposition of variance; applied to the

expression f (Y)WY, we get

Var[ f (Y)WY] = Var
[

f (Y)
pY(Y)

]
+ E

[
f (Y)2 Var [WY | Y]

]
, (6.31)

which says variance has two sources: mismatches between f and marginal density pY, and

Var [WY | Y], the mean squared deviation of WY from its conditional expectation 1/ p̄(Y).

Intuitively, if WY approaches 1/ p̄(Y) such that Var[WY | Y] goes to zero, Var[ f (Y)WY] also

approaches Var[ f (Y)/ p̄(Y)].

For the special case of equality f (x) = Cf p̂(x), we can derive the exact variance

Var [ f (Y)WY] = Var

[
f (Y)
p̂(Y)

M

∑
i=1

wi

]
= C2

f Var

[
M

∑
i=1

wi

]
. (6.32)

Independent of p̂’s proportionality to f , our analysis shows the importance of re-

ducing Var[∑i wi] given finite samples. In practice, we can minimize variance by mak-

ing wi more uniform. In particular, preventing singularities in wi avoids unbounded

variance.

6.4.4 Avoiding Singularities �

Generalized RIS does not automatically remove singularities from Monte Carlo inte-

gration. As usual, avoiding large outliers requires additional guarantees. More concretely,

if ∑M
i=1 wi is unbounded, the contribution

f (Y)WY =
f (Y)
p̂(Y)

M

∑
i=1

wi (6.33)

can also be unbounded.

Clearly, very large wi are detrimental to our goal of bringing Var[∑M
i=1 wi] to zero; we

should aim to make the weight sum,

M

∑
i=1

wi =
M

∑
i=1

Xi∈D(Ti)

mi(Ti(Xi)) · p̂(Ti(Xi))Wi ·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ , (6.34)

as uniform as possible. Going through the terms, we identify potential challenges to

maintaining uniformity:

1. Some samples y may be reachable via only finitely many Ti even in the limit
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2. Resampling MIS weights mi can greatly exceed 1/M

3. The product p̂(Ti(Xi))Wi can be unbounded

4. Jacobians can be unbounded

These can be tackled one-by-one, e.g., (1) adding samples from all source domains when

increasing M, and (4) modifying shift map domains to cut off extreme Jacobians (while

maintaining bijectivity).

Instead, we simultaneously solve all four by designing a suitable sampling scheme

and two robust MIS weight families. This guarantees bounded contributions, asymptotic

convergence to p̂, and realizes asymptotic zero-variance integration with samples from

multiple domains.

6.4.5 Canonical Samples �

Designing MIS weights for samples arising from multiple strategies normally requires

knowing PDFs for samples with all strategies. Resampling gives up access to such PDFs.

Instead, we design robust MIS weights by assuming samples Xi are associated with non-

negative unnormalized target distributions p̂i, much like p̂, that act as proxies for pXi .

RIS, and our generalization, conceptually need an infinite stream of random samples to

asymptotically converge to desired distribution p̄. If a subset of supp p̂ is covered by this

stream only finitely many times, pY can not generally converge to p̄ in this subset.

Sometimes, as in light transport, covering the support of p̂ with samples Xi from other

domains Ωi may be challenging. By taking samples from an importance sampler that

directly targets p̂, we can cover supp p̂ as many times as needed for convergence. We

define samples Xi that directly target p̂ in Ω with the identity shift map and p̂i = p̂ to be

canonical, motivated by Bitterli [149], and present the following mathematical definition:

Definition 6.4.2 (Canonical Sample). An input sample Xi ∈Ωi is canonical if its domain is

Ω, it uses the identity shift map Ti(x) = x, uses p̂i = p̂, and covers supp p̂ (i.e., supp p̂ ⊂

supp Xi).

We denote the set of indices of canonical samples in 1, . . . , M by R and their number

by |R|. Later, we find that if canonical sample count increases sufficiently as the total in-
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put count increases, the MIS weights in Section 6.4.6 guarantee asymptotic convergence

of pY to p̄ when resampling from multiple domains.

6.4.6 Designing Robust MIS Weights �

As motivated in Section 6.4.4, we design resampling MIS weights to guarantee bounded

contribution for the chosen sample Y, assuming input samples Xi are reasonably dis-

tributed for target functions p̂i. To simplify the derivation, we define a new symbol, “p̂

from i”,

p̂←i(y) =

{
p̂i

(
T−1

i (y)
) ∣∣∣T−1

i
′
∣∣∣ (y), if y ∈ Ti(supp Xi)

0 otherwise
, (6.35)

i.e., for the sample y, evaluate its proxy PDF p̂i at the sample location x in the original

domain Ωi, multiplied by the Jacobian determinant of the shift.

We aim to bound the resampling weights wi and construct two families of MIS weights

that guarantee this. We then derive their upper bounds, which decrease with additional

canonical samples. Later, we utilize these bounds to guarantee convergence of pY to p̄.

• Generalized Talbot MIS. The first family, which we derive in Section B.4, general-

izes the weights of Talbot [8] into the following:

mi(y) =
p̂←i(y)

∑M
j=1 p̂←j(y)

. (6.36)

Talbot’s [8] form is obtained by assuming independent samples over one domain (Ωi = Ω,

Ti(x) = x) and using exact PDFs pk in place of p̂←k. This MIS family is analogous to the

balance heuristic [160] between possible sources of sample Y.

• Generalized pairwise MIS. The second family of MIS weights, derived in Sec-

tion B.4, generalizes Bitterli’s [149] pairwise MIS, originally given for a single canonical

sample and domain (|R| = 1, Ωi = Ω, Ti(x) = x) for the defensive variant below. The key

benefit of pairwise MIS is a significant cost reduction from O(M2) to O(M |R|). This comes

from restricting application of MIS to individual pairs of target functions, each involving

only the target p̂ and the source p̂←i, if i is not a canonical sample, and an average of MIS

between pairs ( p̂, p̂←j) otherwise. We discuss the generalized pairwise MIS family more

in Section B.4, but present here the uniform variant, which gives all inputs equal weight if

they have the same p̂(←) values,
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mi(y) =




1
M−|R| ∑

j/∈R

p̂(y)
|R| p̂(y)+(M−|R|) p̂←j(y)

, if i ∈ R

p̂←i(y)
|R| p̂(y)+(M−|R|) p̂←i(y)

, if i /∈ R
, (6.37)

and a slightly less efficient but often more robust defensive variant, which always gives

canonical samples higher MIS weights than non-canonical samples,

mi(y) =




1
M + 1

M ∑
j/∈R

p̂(y)
|R| p̂(y)+(M−|R|) p̂←j(y)

, if i ∈ R

M−|R|
M

p̂←i(y)
|R| p̂(y)+(M−|R|) p̂←i(y)

, if i /∈ R
. (6.38)

• Resampling weight bounds. With these definitions, we can guarantee resampling

weights wi stay bounded (Theorem A.4): If the mi are given by Equation 6.36, 6.37 or 6.38,

and a sample Xi is reasonably distributed for integrating p̂i, i.e., p̂i(Xi)Wi ≤ Ci for some

Ci, then the resampling weight of Xi is bounded as

wi ≤
Ci

|R| . (6.39)

The condition that p̂i(Xi)Wi is bounded is equivalent to a bounded relative error of Wi

from its ideal value 1/ p̄i(Xi). Starting from independent samples, we can guarantee this

inductively:

• Bounded variance. If we independently sample Xi with a reasonable importance

sampling strategy for target function p̂i (i.e., p̂i(Xi) ≤ Ci pi(Xi)), then p̂i(Xi)Wi =

p̂i(Xi)/pi(Xi) ≤ Ci, and Equation 6.39 applies to Xi.

If all input samples Xi fulfill p̂i(Xi)Wi ≤ Ci for constants Ci, then

p̂(Y)WY =
M

∑
i=1

wi ≤
M

∑
i=1

Ci

|R| , (6.40)

and Equation 6.39 applies to Y, since p̂(Y)WY is bounded.

Inductively, chaining GRIS by starting from independent samples retains a finite worst-

case resampling weight sum and a finite worst-case contribution f (Y)WY, assuming f / p̂

is bounded.

A bounded random variable like f (Y)WY features finite variance. Further, averaging

such variables converges to the expectation. This important property is not automati-

cally guaranteed by the resampling MIS weights earlier ReSTIR work implicitly used, as

mi = 1/M often fails to properly partition unity, and additionally may not account for the

singularities in Equation 6.33.
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• Constant resampling weights. Constant resampling MIS weights mi(y) = 1/M are

very cheap to evaluate. But such MIS weights only sometimes fulfill the constraints of mi

(Equation 6.20), i.e., when any realizable sample Xi could have been sampled from all other

domains Ωj with positive PDF.7 This is generally not true, but an important exception is

when all the input samples are canonical. This can be achieved e.g., by producing the

input samples with GRIS that uses at least one canonical sample each time, and one of

the resampling MIS schemes above. If constant weights are still used in the general case,

convergence to p̄ is lost along with our convergence and variance results. Bias can still be

removed by using proper contribution MIS, as proposed by Bitterli et al. [7].

• Tractable PDFs. If all input samples have known, tractable PDFs (e.g., Xi come

from importance samplers with known PDFs pi), the generalized pairwise and generalized

Talbot MIS weights can be modified to use pi instead of p̂i, with instances of p̂ replaced

with PDF pc of a fixed canonical sample Xc. The canonical samples must have a PDF

reasonable for integrating p̂. See Section B.4.4 for more information.

6.4.7 Guaranteeing Convergence �

So far, we showed GRIS achieves asymptotic convergence of pY to p̄ simply by requir-

ing Var
[
∑M

i=1 wi

]
−→ 0. In this section we show how to guarantee convergence in a direct

application of generalized RIS theory. Section 6.5 extends this analysis to multi-pass algo-

rithms that guarantee convergence in a streaming manner, requiring only finite memory

and amortizing computation between multiple integrals.

• Independent samples. We assume the case of multiple domains with robust resam-

pling MIS weights (Section 6.4.6), applying Theorem A.4 to obtain a bound wi ≤ Ci/ |R|

on the resampling weights. If we also assume that pairs (Xi, Wi) are independent, then

the wi are independent, and Var
[
∑M

i=1 wi

]
= ∑M

i=1 Var [wi]. We bound the variances by

Popoviciu’s inequality as

M

∑
i=1

Var [wi] ≤
M

∑
i=1

1
4

C2
i

|R|2
, (6.41)

which converges to zero if |R| grows fast enough compared to M and Ci. A practical

constraint asserts the importance sampling quality of additional samples does not grow

7This alone is not generally enough to guarantee finite variance.
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worse without bound, i.e., there exists an upper bound C such that Ci ≤ C for all i. Then

we get Var
[
∑M

i=1 wi

]
≤ C2 M

4|R|2
, guaranteeing convergence to zero if |R| grows faster than

√
M such that |R| /

√
M −→ ∞. For example, |R| ≈ c M0.5001 for some c > 0 converges

(slowly) in the limit. But more practically, we may ensure the ratio of canonical samples,

|R| /M, never falls below some constant γ > 0 for large enough M; this guarantees a

worst-case convergence rate of O(1/M) in terms of variance.

• Dependent samples. Our GRIS theory does not assume sample independence; con-

vergence and variance results only assume that Var
[
∑M

i=1 wi

]
−→ 0 is true. For independent

samples, this constraint is easy to prove. For dependent samples, this constraint may not

be true. An easy counter-example uses duplicate samples Xi; no variance reduction can

occur with increased sample count.

We still get convergence if sample correlation is weak enough. Assume the case of

|R| /M ≥ γ and wi ≤ C/ |R| for all i (e.g., a single-domain with mi = 1/M,8 or multi-

domains with our novel mi). While this may not converge generally, we can guarantee

convergence by assuming correlations between resampling weights wi and wi+k tend to

zero as k −→ ∞. More precisely, we assume there exists a non-negative sequence bk such

that regardless of i, the correlation ρi,i+k ≤ bk, and bk −→ 0. Then, we can manipulate

Var

[
M

∑
i=1

wi

]
=

M

∑
i=1

Var [wi] + 2
M

∑
i=1

M−i

∑
k=1

Cov(wi, wi+k), (6.42)

where the first term converges to zero by the argument following Equation 6.41, and for

the second term we derive in Section B.2

M

∑
i=1

M−i

∑
k=1

Cov(wi, wi+k) ≤
C2

4γ2

(
1
M

M

∑
k=1

bk

)
M→∞−−−→ 0, (6.43)

where γ is the minimum ratio of |R| /M and C is an upper bound for all the Ci. The mean

of bk converges to zero since bk converges to zero, and we get convergence with dependent

samples.

Section B.2 also contains a generalized result allowing the ratio |R| /M to decrease as

M grows if the maximum correlation bk falls quickly enough to compensate. For example,

if ∑∞
k=1 bk < ∞, we can guarantee convergence with |R| ≥ c · M0.5001 for some c > 0.

8If p̂(Xi)Wi ≤ C for a single-domain with constant MIS, then wi = p̂(Xi)Wi/M ≤ C/M = C/ |R| if all
samples are canonical.
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6.5 Amortization Over an Image with ReSTIR
Here, we reformulate two ReSTIR variants on top of generalized RIS: a novel progres-

sive offline renderer and a reformulation of Bitterli et al. [7] using GRIS. We also reinterpret

ReSTIR as an unbiased explorative non-Markovian chain and explain when averaging the

images produced with it converges to the ground truth.

In light transport, we aim to produce an image where each pixel’s color Ii is determined

by integrals

Ii =
∫

Ω
hi(x̄) f (x̄)dx̄, (6.44)

for pixel index i, paths Ω from sensor to a light, image filter hi, and path contribution

function f . A path x̄ generally contributes to few pixels due to filter hi.

Common filtering methods sample paths for each pixel and splat the path contributions

f (X)/pX(X) onto the image with kernel hj. This allows, without loss of generality, inte-

grating pixel i only over paths Ωi directly contributing to it. This corresponds to using a

box filter for hi, but generalizing to more complex filters is straightforward.

Integrating Ii for each pixel only over its domain Ωi, gives

Ii =
∫

Ωi

f (x̄)dx̄, (6.45)

and sharing paths between domains Ωi and Ωj is impossible without path modification.

We aim to more efficiently share paths between integrals by incorporating shift mappings

into our resampling.

6.5.1 Formulation

We associate pixels i with path space domains Ωi, integrands fi (i.e., f restricted9 to

Ωi), and target functions p̂i, which could be e.g., grayscale path contribution functions | fi|

or still cheaper approximations with bounded relative error.

We assume that each pixel i is equipped with a sampler for canonical paths Xi that are

reasonable for integrating p̂i. The samples could e.g., be directly importance sampled for

p̂i, or resampled with RIS from multiple reasonably importance sampled initial candidates.

9Domain restriction: D( fi) = Ωi ⊂ Ω and fi(x) = f (x) in Ωi.
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6.5.2 Reservoirs and Weighted GRIS

We slightly extend the discussion on reservoirs in Section 5.2 to generalize reservoir

merging to multiple input domains. A reservoir r stores a path Xr, its weight Wr, and a

sample count Mr, as per the traditional use of reservoirs for sampling Xr from a stream of

inputs. In that context, Mr is the number of samples the current Xr is resampled from, as

Xr is randomly retained or replaced with the right probability at the encounter of each new

input sample, and Mr is increased by one. A reservoir merge of reservoirs r1 and r2 builds

a new reservoir rm, with Xrm resampled from Xr1 and Xr2 as if it were resampled from the

concatenation of the input samples of r1 and r2, and Mrm is simply Mr1 + Mr2 .

The interpretation of Mr as a sample count is too strict for ReSTIR: a reservoir merge

simply resamples Xrm with RIS from canonical samples Xr1 and Xr2 , with resampling MIS

weights mri(y) = Mri /(Mr1 + Mr2). The meaning of Mr in this context is relative weight

for the corresponding sample. Since we use the Xr for estimating an integral and the Mr

define the relative weights of these samples, we refer to the Mr as confidence weights. In fact,

ReSTIR even caps Mr to a constant Mc, limiting confidence on old samples, invalidating

the old interpretation as a sample count.

Reservoir merging generalizes to weighted GRIS, with proper MIS weights (see Sec-

tion 6.4.6), simply by multiplying the p̂ and p̂← in the MIS formulas by the corresponding

reservoir’s Mr; the resampling result is stored in Xrm , and Mrm = min(Mc, ∑j Mrj). This

generalized form of reservoir merging is used in the next section.

6.5.3 ReSTIR As Chained GRIS

We rewrite the key aspects of the ReSTIR algorithm, i.e., Bitterli et al. [7, Algorithm 5],

as a sequence of GRIS resampling steps; we will refer to the stages of this algorithm later:

Let Yt−1
i be a resampled (or sampled) path for pixel i on frame t−1, stored for later

reuse along with its unbiased contribution weight WYt−1
i

. For each frame t, in ReSTIR, we

1. (Initial candidates) Generate an independent sample Xt
i for each pixel i and evaluate

its contribution weight WXt
i
.

2. (Temporal reuse) Use GRIS to select Zi by resampling between last frame’s sample Yt−1
i

and new sample Xt
i . Pixel correspondences may be identified via motion vectors.



113

3. (Spatial reuse) Each pixel selects numerous random spatial neighbors j, and selects

Yt
i by resampling between Zi and neighbor samples Zj via GRIS. This step may be

executed multiple times with the assignment Zi := Yt
i .

4. Estimate the pixel integral, It
i ≈ fi(Yt

i )WYt
i
.

ReSTIR typically stores a reservoir for each pixel i. The new samples Xt
i are treated

as reservoirs with Mr = 1, and are merged with the reservoir storing Yt−1
i , accounting

for the confidence weights. Spatial resampling works akin to a stochastic convolution,

sequentially merging in reservoirs from random nearby pixels. The last sample Yt
i is stored

in that pixel’s reservoir, and its confidence weight from the spatial reuse passes is used in

the next frame’s temporal resampling step. Occluded samples get weighted wi = 0 to

avoid selection.

Section B.5 discusses additional details related to performance and correctness.

6.5.4 Path Space Exploration via M-capping

The capping of Mr to a constant Mc (Section 6.5.2) is critical to ReSTIR: without limiting

Mr, the relative weights of new samples exponentially approach zero, causing convergence

to the wrong result as in Figure 6.2.

With M-capping, the relative weight of the temporally reused sample is approximately

limited to at most Mc/(Mc + 1), which should intuitively fulfill the convergence con-

straints in Section 6.4.7.10 The abovementioned constraint is a requirement for input sam-

ples; even if the constraint is fulfilled, the ReSTIR result itself still will not converge since

the number of spatial input samples is not increased (M �−→ ∞). Instead, ReSTIR will

explore the path space in such a way that its average over frames will now converge in a

still scene: Assume that we hypothetically resample, with p̂ = fi, for pixel i a path from

one of past frames, i.e., Y = Ys
i where s is random. Its PDF now approaches fi/‖ fi‖, the

variance of its contribution converges to zero, and the said contribution is the mean of the

ReSTIR frames, fi(Y)WY =
�
��fi(Y)

p̂(Y) ∑T
t=1

1
T · fi(Yt

i )WYt
i
.

This gives us an intriguing interpretation of ReSTIR: with state defined as one

path Xi for each pixel, ReSTIR produces an unbiased, explorative non-Markovian chain

10This would lead to bk = (Mc/(Mc + 1))k with bk −→ 0, but an exact mathematical proof is hard due to
correlations and complicated MIS weights.
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whose PDF approximates f better with more input samples. Averaging images of this

chain converges in a still scene. In real-time, we display single states of the unbiased

chain, updated in time by sampling, shifting and resampling paths.

6.5.5 ReSTIR for Offline Rendering

Temporal path reuse reduces current frame variance but correlates samples temporally.

This slows convergence if temporally accumulating in a progressive renderer. Instead, we

propose rendering independent frames with spatial-only GRIS. This speeds convergence

and should allow easier integration to existing systems.

This offline algorithm is a simple two-pass method. In a single iteration, the first pass

performs one or more rounds of cross-pixel reuse with GRIS to resample canonical samples

from other pixels. The second pass simply averages the produced images.

Proving convergence of the mean is now easy, despite the correlations in the spatial

reuse passes: GRIS with proper MIS weights remains unbiased despite the correlations,

and by Equation 6.40, the contributions of GRIS with a fixed number of spatial reuse passes

remain bounded. Hence, averaging independently sampled frames converges.

Strictly speaking, the above convergence is true only for scalar functions fi. In practice,

fi is vector-valued, and we use e.g., a grayscale p̂i = | fi|, which guarantees convergence of

a path Y = Ys
i sampled from a random frame s to the brightness | fi|. Literally evaluating

the unbiased contribution yields,

fi(Y)WY =
fi(Y)
| fi(Y)|

·
T

∑
t=1

1
T
∣∣ fi(Yt

i )
∣∣WYt

i
, (6.46)

which may include color noise. However, in the offline context we assume budget for

multiple samples, and thus recommend the explicit mean formula

Ĩi =
1
T

T

∑
t=1

fi(Yt
i )WYt

i
(6.47)

as it removes color noise.

The convergence of Y = Ys
i in brightness opens potentially interesting future work: a

random subset of the Yt
i could be resampled and stored for each pixel to e.g., bootstrap the

rendering of the next animation frame, or for re-rendering after material changes.
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6.6 Designing Shift Mappings
Previous light transport techniques that manipulate and reuse paths (e.g., gradient-

domain rendering) introduce various shift mappings to map paths between pixels. Gen-

erally, no single shift map is optimal and the best one depends on both scene properties as

well as their computational efficiency on different hardware. In this section, we describe

key properties of effective shift maps and introduce common building blocks for practical

shift mappings.

We also describe a novel design principle for effective GPU-based shift mappings, how

to choose the shifting strategy based on the sampled BSDF lobe, and new heuristics for

avoiding noise.

6.6.1 Shift Mapping

A shift map T takes a path x̄ from pixel k and maps it to another path ȳ = T(x̄) in pixel

j. We call the original path x̄ the base path, and the shifted ȳ the offset path. Using the vertex

parametrization by Veach [160], we define a generic shift map T from Ωk to Ωj as

T([x0, x1, x2, x3, ...]) = [y0, y1, y2, y3, ...] . (6.48)

Vertex y0 is normally specified on the sensor and y1 comes from tracing through pixel j,

accounting for depth-of-field parameters.

When designing shift maps, the main freedom (and challenge) is designing a heuris-

tic for vertices y2 and beyond so the shift approximately retains the path contribution,

fk(Tk(x̄))≈ fj(x̄). Maximizing similarity of path contributions roughly equates to reusing

(nearly) the same paths for nearby pixels, a common design heuristic. Figure 6.4 shows a

hybrid shift mapping of random replay and reconnection as an example.

• Local decisions. A common strategy to find offset paths ȳ builds them sequentially,

vertex-by-vertex, starting from y1 and analyzing local base and offset path geometry. For

each i, the next offset vertex yi+1 is decided based on base path vertices xi−1, xi, and xi+1

plus offset path vertices yi−1 and yi. For example, if vertices xi, xi+1 and yi have rough

materials, a common strategy connects the base and offset paths by choosing yi+1 = xi+1.

Previous vertices xi−1 and yi−1 can also be used to perform half-vector copy [108].

• Ensuring bijectivity. Sequential construction of offset paths sometimes halts abruptly:

e.g., in half-vector copy, local decisions can map a refraction into total internal reflection,
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Figure 6.4: A hybrid shift mapping. The base path (black) selects x4 for reconnection, since
both x3 and x4 are rough. The offset path (blue) copies the random numbers of the base
at x1 and x2 to construct similar scatter directions for y1 and y2 and reconnects y3 to x4.
This is the earliest reconnection giving two consecutive rough/diffuse vertices. Without
connectability conditions the offset path (blue) would connect y1 to x2 (a glossy vertex),
potentially giving a path of near-zero contribution as y1 ↔ x2 ↔ x3 is far from an ideal
reflection.

but the reverse never happens, breaking bijectivity. Bijectivity is not always achievable

throughout the path space, but that poses no big problem: not all paths need belong

to the shift mapping domain. The shift may, after trying to shift a path, simply return

“undefined.” This marks the path as not belonging in the shift’s domain.

Any successful shift must be invertible: if x̄ shifts to ȳ, an inverse shift must exist to

map ȳ back to x̄. Often slightly more is guaranteed by designing symmetric shift mappings

where if Tk→j(x̄) = ȳ, then Tj→k(ȳ) = x̄. Removing paths from a map’s domain may cause

noise and waste computation, but neglecting bijectivity introduces significant bias.

6.6.2 Common Building Blocks

Local decisions for building offset paths often stem from fixing some property of the

base path; such invariants share information between the paths, making shift inversion

possible. Here we briefly review some common strategies for shift mapping:

• Vertex copy (reconnection). Reconnecting offset and base paths as soon as possible

is common, as vertex sharing is cheap and often keeps path contributions similar. If xi,

xi+1, and yi all lie on rough materials, Lehtinen et al. [107] reconnect the offset path to the

base path by setting yi+1 = xi+1. Subsequent vertices of x̄ are normally copied too. This

strategy is good for diffuse and rough materials.

• Half-vector copy. Reconnection breaks path similarity for near-specular vertices.

Kettunen et al. [108] transform the base path’s half-vector into local tangent space, copy it

to the offset path, and re-trace the vertex yi+1 in the reflection (or refraction) direction.
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• Direction copy. Direction copy takes the exitant direction from a base path vertex

and copies it to the offset path, in global coordinates, and re-traces to find the next vertex

yi+1. Direction copy is often used with environment mapping.

• Random replay. Random replay copies the base path’s random numbers to re-trace

yi+1 with the method used by the base path. Random replay often makes decisions roughly

similar to copying the half-vector or direction, or reconnecting to an area light in the case

of next-event-estimation.

• Manifold exploration. If reconnection is impossible due to specularities, Lehtinen

et al. [107] find the next connectable vertex, copy it, and apply manifold exploration [163]

for intermediate (near-)specular vertices. This strategy iteratively constructs high-quality

offset paths, albeit at relatively high cost.

While reconnecting quickly is often a good strategy, there are pitfalls. Some challenges

for path shifts include: not closely approximating ideal reflections on high gloss surfaces,

trying to reconnect through occlusions, shifting between different objects or materials, or

simply diverging too far (e.g., due to reflection or refraction).

6.6.3 A Full Shift Mapping

Full shift mappings combine these building blocks, often based on simple heuristics.

For example, Kettunen et al. [108] sequentially analyze base and offset paths to find suit-

able reconnections using a simple condition: vertices xi, xi+1, and yi must all be considered

“sufficiently” rough. If this test passes, the base and offset paths are reconnected, otherwise

a half-vector copy is used and the test is repeated for the next vertex. Hua et al. [114]

show equivalent results by replacing the half-vector copy by random replay. We found the

approach by Hua et al. more efficient on the GPU and slightly more general, so we adopt

it with several improvements.

6.6.4 Shift Mappings Optimized for Real-Time Rendering

We study our ReSTIR PT with two different shift mappings, and modify them as needed

to make them suitable for a GPU implementation that can target real-time rendering:

• The reconnection shift [107] always connects to the first indirect vertex by setting

y2 = x2, which usually works well for sufficiently diffuse scenes. ReSTIR GI [10] also
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implicitly uses this choice but trades correctness for performance.

• A hybrid of random replay and reconnection [114] that postpones the reconnection

by using random replay if certain connectability conditions are not fulfilled. We

present an improved variant of this shift mapping.

The reconnection shift is easy to implement efficiently: it only requires storing the

reconnection vertex and re-evaluating the path contribution. Implementing the hybrid

shift efficiently is non-trivial: random replay is not efficient without reconnections, but due

to potential reconnection postponing, all base path vertices need to be stored as candidates

for reconnection. This is not ideal since GPU ray tracing is often memory-bound.

We propose minimizing memory use by letting the base path select a single potential

reconnection vertex; we precompute the first base path vertex xi that satisfies the con-

nectability condition for xi and xi+1. Reconnection must happen at this vertex, or it does

not happen. This only requires storing vertex xi+1 instead of the full path.

This constraint is reasonable. For useful path reuse, the base and offset paths should

be relatively similar; if similar enough, they should also agree on the reconnection index.

Further, our bijectivity requirement forces this guarantee: when building y, if we find it

disagrees on the earliest possible reconnection vertex, the shift must return “undefined”

as it would not be invertible.

6.6.5 Connectability Conditions

We propose two novel improvements for the connectability conditions compared to

previous work, and we find these to often result in a significant noise and artifact reduction

with our method.

• Distance condition. Area formulations of the rendering equation include geometry

terms that become singular for short path segments, e.g., in corners. In unidirectional path

tracing, this singularity stems from next-event-estimation but is eliminated by standard

MIS. Similar singularities appear when reconnecting nearby vertices, causing increased

noise near geometry edges.

We propose reducing this problem by skipping reconnections that introduce short seg-

ments. This is similar to distances test in Manzi et al.[162], but instead of spawning a

manifold walk, we postpone reconnection by performing random replay. More concretely,
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we only allow reconnection to xi+1 if ‖xi+1−xi‖ ≥ dmax. By symmetry, the offset path must

fulfill ‖xi+1−yi‖ ≥ dmax for yi+1 to become xi+1, as described in Section 6.6.4.

• Lobe-specific connectability. Kettunen et al. [108] test reconnection feasibility by

ensuring roughness values of xi, xi+1, and yi all exceed a given threshold. But since BSDFs

often sum multiple separate lobes, such tests are ambiguous, e.g., on a material with a

bottom diffuse layer and a top clear coat. Choosing good shift maps for such materials is

a long-standing problem [164]: how to classify roughness of composite materials with just

one parameter? Any single strategy likely mistreats at least one layer.

Unidirectional path tracers often optimize importance sampling by decomposing and

evaluating only one BSDFs lobe per vertex [165]. We propose the same for shift mappings:

we examine the roughness of just the selected lobe, and otherwise proceed as described

in Section 6.6.4. We detail the path extension with lobe indices that is required for lobe-

specific connectability in Section 6.6.6.

6.6.6 Extending Paths with Lobe Indices

For a path tracer generating N paths by different techniques for each path length d, the

standard path integral can be written

I =
∞

∑
d=1

N

∑
n=1

∫

Ωd

ωn(x̄) f (x̄)dx̄ , (6.49)

where ωn is the MIS weight for path strategy n. For simplicity, we assume here that N = 2,

and n = 1 uses next-event estimation to sample the last vertex and n = 2 uses BSDF

sampling. Balance heuristic MIS weights give ωn(x̄) =
pn(x̄)

p1(x̄)+p2(x̄)
, where p1 and p2 are the

NEE and BSDF sampling PDFs of the path, and sum over all BSDF lobes.

Our improved shift strategies from Section 6.6.4 require splitting BSDFs into lobes.

We transform Equation 6.49 to use a lobe-extended path space, allowing us to implement

ReSTIR by simple substitution, without any need for heuristic argumentation.

We combine paths x̄ = (x0, . . . , xd) with sequences of lobe indices �̄ = (�1, . . . , �d−1)

into an extended path space of length-d paths Ω̃d represented by pairs (x̄, �̄). Each �j is a

positive integer 1≤ �j ≤Nlobe (the BRDF model’s lobe count) or special symbol �d−1=N if

our path ends with next-event estimation.

With f denoting the usual path contribution function, we define a partial contribution

function f�̄ as follows: for fully BSDF-sampled paths, it evaluates only lobe �j at each vertex
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xj. If the last vertex xd is NEE-sampled, i.e., �d−1 = N , the BSDF at xd−1 is evaluated with

all lobes.

Denoting the set of lobe index sequences by Ld, we can rewrite Equation 6.49 as

I =
∞

∑
d=1

∑
�̄∈Ld

∫

Ωd

ωn(�̄)(x̄) f�̄(x̄)dx̄, (6.50)

for n(�̄) ∈ {1, 2} based on whether the last vertex is NEE- or BSDF-sampled. Finally,

we combine the sums into an integral similar to Veach [160], which integrates over our

extended path space x̃∈ Ω̃ for pairs x̃ = (x̄, �̄) of all lengths d:

I =
∫

Ω̃
ωn(�̄)(x̄) f�̄(x̄)dx̃. (6.51)

This formulation allows use of shift mappings that reason about the BSDF lobes, which is

not possible in vertex-based path spaces.

To shift a path, we test if vertex xj is sufficiently rough by examining the roughness

of the lobe �j chosen to sample vertex xj+1. We treat NEE-sampled vertices as rough if at

least one of their BRDF lobes is sufficiently rough. All light vertices are treated as rough. If

all three reconnection vertices (xj, xj+1 and yj) pass the roughness and distance conditions

(Section 6.6.5), we execute the reconnection; otherwise we sample yj+1 via random replay.

When using random replay, base and offset paths typically select the same BRDF lobes,

as reusing random numbers over nearby paths gives similar per-vertex choices. A re-

connection shift copies the lobe index from the base path vertex. In both cases, path

contribution is likely preserved. Separating BRDF lobes frequently increases efficiency

of our hybrid shift significantly.

6.7 Implementation
We apply our GRIS theory in a proof-of-concept path tracing algorithm we call ReSTIR

path tracing (ReSTIR PT). We build on the Falcor GPU rendering framework [166], and

implement ReSTIR PT as chained GRIS passes, per Section 6.5.3.

ReSTIR PT can use any shift map to reuse paths between pixels, but we implement the

two from the previous section: a hybrid shift combining random replay and reconnection

with our lobe-specific improvements, and a simpler reconnection shift that always recon-

nects to the first indirect vertex.
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Like many path tracers, ours only evaluates the sampled BSDF lobe for BSDF-sampled

vertices and evaluates all lobes for NEE-sampled vertices. We treat lobe selections as ad-

ditional path parameters, as described in Section 6.6.6, using the sampled lobe roughness

to choose between reconnection and random replay.

Our ReSTIR PT implementation handles full surface-to-surface light transport. Vol-

umetric media requires a volumetric shift map; Lin et al. [157] implicitly defines one

possibility and Gruson et al. [109] propose another, though finding fast volumetric shifts

for resampling remains interesting future work.

We have two prototypes, targeting unbiased real-time and offline light transport, though

neither is performance optimized. This contrasts with Ouyang et al. [10], a biased11 but

optimized precursor. Building on our generalized theory, ReSTIR PT is an unbiased global

illumination method that better handles specular light transport, thanks to supporting

arbitrary shift maps.

While we expect benefits to direct illumination from our GRIS theory, our implementa-

tions primarily address indirect light. We use ReSTIR DI [7] for direct lighting.

Below, we discuss our design choices and implementation details.

6.7.1 Jacobian Determinants

We first give Jacobian determinants for the reconnection and random replay shifts. We

assume base and offset paths up to vertex i are fixed; probability densities below are to be

understood as conditional to earlier path state.

We denote by ωx
i the unit vector from xi to xi+1, and the corresponding random num-

bers leading from vertex xi to xi+1 by ūx
i . The offset path features similar notation with

y.

• Solid angle. When using the common solid angle parametrization, the Jacobian for

the reconnection shift is (e.g., Kettunen et al. [108])

∣∣∣∣∣
∂ω

y
i

∂ωx
i

∣∣∣∣∣ =
∣∣∣∣∣
cos θ

y
2

cos θx
2

∣∣∣∣∣
|xi+1 − xi|2

|xi+1 − yi|2
, (6.52)

11Ouyang et al. [10, Section 4.3] explain some of their key sources of bias; following our GRIS theory removes
the bias.
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for θ•2 the angle between ω•
i and the geometric surface normal at xi+1 = yi+1. The Jacobian

for deciding yi+1 by random replay is
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i.e., the ratio of the solid angle sampling probabilities of the next vertices, given the paths

up to vertex i.

As we use local shift decisions, the Jacobian of the full path shift is the product of

Jacobians from each vertex.

• Primary-sample space (PSS). Path tracers build paths x̄ based on random number

sequences ū = (u1, u2, . . .), defining a primary-sample space U . In practice, integrals of

form
∫

Ω f (x̄)dx̄ are evaluated
∫

U
f (x(ū))

pX(x(ū)) dū, where x builds paths using random numbers.

Our prototypes use primary-sample space for easier implementation. Results are iden-

tical, but interpretations change: the integrand is f (x(ū))/pX(x(ū)) over domain U and

the PDF of the primary samples is pU = 1. Section B.6 briefly introduces the PSS formula-

tion of the path integral.

The Jacobian for random replay in the PSS parametrization is always 1, and solid-angle

Jacobians can be converted into primary-sample space by dividing by the right-hand-side

of Equation 6.53. Due to the vertex-by-vertex construction of the path, we have
∣∣∣∣∣
∂ūy
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• Mixing PSS and path space shifts �. Mixing random replay with path space shifts

poses a conceptual challenge. Path samplers often consume more random numbers than

the path dimensionality; this dimensionality mismatch means Jacobians between path

space and primary-sample space do not exist. Bitterli et al. [167] bijectively map between

paths and their random numbers by padding paths with extra, unused dimensions. As-

suming this theoretical bijection exists often allows mixing path space shifts and random

replay.

6.7.2 Reservoir Storage

Our reservoirs (Section 6.5.3) consume 88 bytes per path while supporting our hybrid

shift. Beyond storing contribution weights Wr and confidence weights Mr (Section 6.5), we
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store information needed for our shift map: the path’s chosen reconnection vertex and a

seed for random replay.

We provide the details of our reservoir data structure in Algorithm 1. A key take-

away is that most of the storage is used for enabling a reconnection to the base path’s

vertex: reconnection requires evaluating offset path’s visibility to the reconnection vertex

and the BSDF towards base path’s next vertex. Note that our reservoir data structure is

unoptimized and highly compressible–real-time use would allow lossy compression for

increased performance, but our prototype implementation does not do it.

6.7.3 Parameters

In the following, we refer to steps of the ReSTIR algorithm as described in Section 6.5.3.

• Offline. For offline rendering, we sample for each pixel 32 initial samples (path

trees) with path tracing, and resample one path with RIS similarly to Lin et al. [157]. The

selected path gets reused over three iterations of spatial reuse. All spatial reuse passes

resample from the current pixel and six neighbors selected from a 10-pixel radius via a low-

discrepancy sequence. We found this a near-optimal configuration for offline rendering.

Section B.7 contains a parameter ablation.

• Real-time. For real-time rendering, we resample the path from only one path tree

sampled with path tracing. A single spatial reuse pass selects three random neighbors in

Algorithm 1: Content of the reservoir struct (88 bytes).

1 struct Reservoir
2 float M; // Confidence weight (for e.g., M-capping).
3 float W; // Unbiased contribution weight.
4 float3 F; // Cached integrand value of the sample.
5 uint pathFlags; // Path length, technique type, reconn. vertex id, etc.
6 uint initRandomSeed; // Random state at primary hit x̄1.

// Information about the reconnection vertex (rc):
7 uint rcVertexRandomSeed; // Random state at reconn. vertex.
8 uint rcVertexInstanceID; // Hit point information:
9 uint rcVertexPrimitiveIndex;

10 float2 rcVertexBarycentrics;
11 float3 rcVertexWi; // Direction to next vertex of base path.
12 float3 rcVertexRadiance; // Incident radiance from next vertex.
13 float4 rcVertexCachedValues; // Various partial terms for evaluating the Jacobian at

reconnection. Light sampling PDF for the MIS weight is also stored here.
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a 20-pixel radius; this keeps spatial reuse costs low and relies more on temporal reuse to

improve distributions. We cap M with Mc = 20, i.e., the prior frame confidence is at most

20× that of new samples.

• Connectability thresholds. Good values for distance and roughness thresholds are

important, but relatively consistent. A per-lobe GGX-roughness threshold of 0.2 generally

works well; scene scale affects the distance threshold, we used 1% - 5% scene size in

different test scenes. The camera distance to the region of interest and material glossiness

affects the optimal parameter. We leave automatically setting ideal parameters to future

work.

• Resampling MIS. We use the defensive variant of pairwise MIS (Equation 6.38)

for spatial reuse. The real-time variant additionally uses generalized Talbot MIS (Equa-

tion 6.36) for temporal reuse. For both, |R| = 1, and convergence is realized in the offline

case by rendering multiple independent frames.

6.8 Results and Discussion
Below we first validate that convergence of ReSTIR PT matches our guarantees from

Section 6.4. In Section 6.8.2 we quantify the quality of our shift maps from Section 6.6, and

in Section 6.8.3, compare ReSTIR PT to recent global illumination algorithms. We present

results separately for our real-time and offline variants. All performance numbers were

measured on a GeForce RTX 3090 at 1920×1080.

6.8.1 Convergence Results

We study convergence in the Cornell Box scene, with modified materials mixing Lam-

bertian and GGX microfacet BSDFs [168] with roughness 0.5 (Figure 6.5a).

We evaluate convergence behavior for three-bounce indirect illumination, and use the

reconnection shift for simplicity. We compute error in grayscale images to map the conver-

gence results to GRIS.

• Asymptotic convergence with fixed reuse window. Section 6.4.6 gives robust Tal-

bot and pairwise resampling MIS weights that (Section 6.4.7) asymptotically realize single-

sample zero-variance integration, given certain correlation and importance sampling cri-

teria. In Figure 6.6, we show an experiment that fixes the ratio |R|/M as we increase the
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(a) Default Cornell Box (b) With glossy boxes

Reconnection

Hybrid

(c) Two shifts
Figure 6.5: The reference rendering (3-bounce indirect lighting) of the Cornell Box scene for
the two variants. (a) Default version, roughness 0.5. (b) Two glossy boxes with roughness
0.15. (c) 1 spp comparison of real-time rendering quality of ReSTIR PT with reconnection
shift (5 ms) and hybrid shift (12 ms) in the glossy variant.

Figure 6.6: Single-sample integration error with GRIS, with more and more input samples
from each pixel in a constant reuse window (7 × 7 pixels). As predicted, asymptotic zero-
variance integration is realized with generalized Talbot and pairwise MIS weights but not
with constant MIS weights (red). Results are the average of 10 independent executions.

independent input sample count over a fixed reuse window. This experiment uses only

spatial reuse (no temporal).

Both our generalized pairwise and Talbot MIS weights realize a linear curve showing

asymptotic zero-variance integration, but constant MIS weights do not. While Talbot

weights have lower per-sample error, the lower algorithmic complexity of pairwise MIS

can achieve similar variance 6-7× cheaper.

• Non-convergence with increasing reuse window. We only guarantee convergence

if |R| > O(
√

M). A case breaking this condition takes one sample from each pixel in an
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increasing window, i.e., |R| = 1 but M grows. This does not guarantee convergence: some

of path space is only covered by the canonical (central) sample. Adding only non-canonical

samples decreases the chance to select the canonical one, so poorly-covered areas become

importance sampled worse. Figure 6.7 shows how reusing over a larger window initially

lowers variance, but beyond some point actually increases variance.

• Temporal history and M-cap. In Section 6.5.3 we discuss capping the temporal

confidence weight Mr in ReSTIR reservoirs. As the cap Mc increases, bk approaches 1 in

Section 6.4.7. Using Mc =∞ corresponds to bk = 1, where we lose all guarantees. Figure 6.2

shows a simple example of this failure, converging to a static and wrong result.

In Figure 6.8a we show ReSTIR PT’s integration error with temporal reuse, with in-

creasing frame counts. Colors correspond to different M-cap values; the scene is static to

avoid errors from animation.

Pixels compute a new independent sample on each iteration, which is resampled with

the temporal result from the prior frame. The old sample’s relative weight is Mr/(Mr+1),

which drastically favors this sample. This is akin to an exponential moving average.

Reusing prior frame samples improves Monte Carlo variance in the beginning, but

until Mr reaches the cap, the relative weight of the new samples diminishes, increasing

frame-to-frame correlation. This correlation buildup is analogous to sample impoverishment

Figure 6.7: Breaking |R|> O(
√

M) loses convergence guarantees. Here, we reuse from a
central (canonical) sample (|R|=1) and an increasing window of M pixels around it. Even
with proper MIS weights, without new canonical samples faraway pixels are increasingly
worse matches. Eventually, this offsets any benefit from reusing more paths.



127

(a) Effect of M-cap (b) Real-time (M=20) vs. offline
Figure 6.8: Results showing different convergence properties of different parameters. (a)
Error of ReSTIR PT with temporal reuse, with increasing frame counts and different M-cap
values. A large M-cap eventually increases noise, while low values do not minimize error.
Good M-caps (green) give consistently low errors. (b) Our offline method (blue) turns off
temporal reuse, which converges faster when averaging frames; it avoids the frame-to-
frame correlation introduced by temporal reuse.

in the SIR literature: fewer and fewer truly different samples remain, unless this correlation

buildup is halted.

Eventually, increased correlation overshadows the benefits of reuse (red, orange) lead-

ing to higher variance until M-cap is reached. Capping M to a value that maximizes the

benefits of temporal reuse (green) is foundational to real-time rendering with ReSTIR.

In Figure 6.8b we show the convergence behavior when averaging consecutive frames

of our real-time ReSTIR PT with a finite M-cap (purple). We empirically find convergence,

as the M-cap decorrelates temporally distant frames, i.e., it forgets temporal correlations.

• Offline rendering. The goal of offline rendering is slightly different: instead of

maximizing the individual quality of each frame, we want to produce the best image over

a longer rendering time. We find that for this purpose, the correlations from temporal

reuse hurt more than they help, and we propose turning off temporal reuse for offline

rendering. The additional rendering time allows us to use slightly different rendering

parameters (Section 6.7.3), and due to both improvements, the resulting algorithm often

converges significantly faster (Figure 6.8b, blue).
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6.8.2 Shift Mapping Results

We study ReSTIR PT with the reconnection and hybrid shifts in the Cornell Box scene.

We analyze the results in the rough variant (GGX roughness 0.5, Figure 6.5a), and variant

with glossy boxes (roughness 0.15, Figure 6.5b).

• Reconnection is good for rough. We plot convergence in Figure 6.9 with a path

tracing baseline. As known from gradient-domain rendering (e.g., Kettunen et al. [108]),

the reconnection shift is efficient for rough surfaces (Figure 6.9a, green) allowing cheap

path reuse from indirect light. Because the reconnection shift (green) always reconnects

after a primary hit, regardless of BSDF, it less efficiently reuses paths involving glossy

interactions (Figure 6.9b, green).

• Hybrid is more robust. Random replay better handles glossy surfaces; our hybrid

shift inherits this property (Figure 6.9b, red) while also remaining effective on rough sur-

faces (Figure 6.9a, red).

• Visual comparison. Figure 6.5 shows shift map behavior on varied material types.

For the glossy Cornell Box we render one path per pixel with ReSTIR PT (Figure 6.5c) with

spatiotemporal reuse. On rough surfaces our hybrid shift (Figure 6.5c, bottom) behaves

similar to a reconnection shift (Figure 6.5c, top), but our hybrid’s distance criteria helps

decrease noise at box edges.

Our hybrid shift postpones reconnections on glossy materials by inserting a random

(a) Default Cornell Box (b) With glossy boxes
Figure 6.9: Error comparison of our ReSTIR PT with the reconnection shift (blue) and the
hybrid shift (green). Both shift mappings are good for rough scenes (left), but the hybrid
shift (green) is more suited for scenes with glossy surfaces (right).
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replay. This often improves later reconnections, reducing noise on glossy surfaces (Fig-

ure 6.5c, side of glossy box).

The lower reconnection shift quality is somewhat offset by its lower cost; equal-time

comparisons allow averaging multiple independent iterations of the algorithm.

• Separate handling of lobes. Many renderers only evaluate one random lobe per

BSDF evaluation. Varying the selected shift map per lobe significantly reduces noise and

improves performance (see Figure 6.10). Reconnecting works well for rough BSDFs, and

random replay is effective on glossy BSDFs. Neither shift is ideal for multi-lobe materials,

but shifting lobes separately fixes the issue.

• Caustics. Caustics paths (i.e., {LS+DE} per Heckbert [169]) are important in highly

specular scenes. Interestingly, we find our two shift maps work well for different types of

caustics with ReSTIR PT.

Our hybrid shift effectively reuses paths for contact caustics, i.e., light concentrating on

a nearby surface (see Figure 6.11, top). When tracing an offset path through the bunny,

random replay produces paths similar to the base path; if this path hits the same light

source, random replay gets good path reuse. Reconnection shifts, however, often fail to

reconnect on near-delta BRDFs.

Caustics from distant highlights, e.g., the lamp reflection in Figure 6.11, bottom, per-

form poorly with the hybrid shift. Offset paths generated by random replay easily di-

verge enough to miss the small highlight, increasing noise. Conversely, reconnection

only changes the incident direction slightly when reconnecting to the distant window,

minimizing path divergence and increasing path contributions.

(a) All Lobes
MAPE: 0.316
Time: 51.7 ms

(b) Random Lobe
MAPE: 0.297
Time: 38.7 ms

(c) All Lobes
Avg. path length
pre-connection: 2.3

(d) Random Lobe
Avg. path length
pre-connection: 1.3

Figure 6.10: Evaluating just one random BSDF lobe enables lobe-specific shift maps
providing more efficient reuse, less noise, and shorter render time. The heatmaps show
lobe-specific shifts decrease the average path length on multi-lobe materials. Images are
insets of the VeachAjar scene.
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Path Tracing Reconnection

Hybrid Reference

Path Tracing Reconnection

Hybrid Reference

Figure 6.11: Top: Equal time (25 ms) comparison between path tracing and ReSTIR PT
using two different shifts in a glass bunny scene. Bottom: Equal time (60 ms) comparison
in the SanMiguel scene (showing only indirect lighting to avoid caustics made invisible
by direct highlight). Notice how the two shift mappings are good for different kinds of
caustics.

We expect a manifold exploration shift [107] would improve both cases; while expen-

sive if applying to all paths, ReSTIR PT works with single path resampled from the path

tree, making such a shift feasible. This is interesting future work.

6.8.3 Rendering Results

In this section we compare our results in three contexts: explicitly versus the path

reuse by Bekaert et al. [11], general quality comparisons to other real-time methods, and

comparisons in an offline context.

Average light levels vary widely across our scenes, so we tone map for visual presenta-

tion. But we report errors with MAPE12 (mean absolute percentage error) on HDR results.

This L1 metric is more resistant to occasional fireflies in sample-reuse algorithms.

For comparisons, we used Falcor’s [166] built-in unidirectional path tracer, and imple-

mented ReSTIR PT, Bekaert-style path reuse (BPR) [11], ReSTIR GI [10], and ReSTIR DI [7]

12We use MAPE(I, Igt) = mean
(

|I−Igt|
0.01·mean( Ĩgt)+ Ĩgt

)
, for Ĩgt a grayscale ground-truth.
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using this framework.

6.8.3.1 Versus Path Reuse

In Figure 6.12, we compare ReSTIR PT with a reconnection shift, path tracing and BPR.

We reimplemented BPR per Bekaert et al. [11], by sampling a path tree for each pixel,

dividing the image into N-rooks tiles, and connecting pixels to all paths within a tile using

a reconnection shift. We use 16-pixel tiles.

But path reuse over tiles, especially at low sample counts, introduces obvious tile

boundaries. ReSTIR-style reuse does not introduce artificial edges, as reuse radii are se-

lected separately per-pixel. Due to tile artifacts, we skip further real-time comparisons

with Bekaert.

6.8.3.2 Real-Time Rendering

For real-time comparisons, all algorithms compute direct lighting via ReSTIR DI [7],

unless otherwise mentioned. Image differences thus depend on how various algorithms

compute indirect illumination. The second and third columns in Figure 6.13 toggle ReSTIR

DI. It greatly reduces variance in direct light, but noise in indirect light requires other

methods.

For equal-time comparisons, we render with ReSTIR PT using the hybrid shift and in-

crease sample counts in other methods to reach (approximately) equal time. For ReSTIR PT

with the reconnection shift, we run multiple independent ReSTIR chains simultaneously

to match this cost. Figures 6.10 to 6.13 were captured during camera motion, to prevent

(a) Path Tracing
MAPE: 0.958

(b) BPR
MAPE: 0.898

(c) Ours (reconn.)
MAPE: 0.325

(d) Reference

Figure 6.12: BPR [11] (b) often reduces error versus path tracing (a), but causes distracting
structural artifacts at low sample counts. (c) Our ReSTIR PT gives less error without
structural artifacts, despite also reusing spatially. Equal-time comparison in Kitchen (33
ms for uncropped images). All methods use ReSTIR DI for direct light.
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ReSTIR PT
Path Tracing Path Tracing Reconnection Hybrid Reference

Visual comparison (direct+indirect) + ReSTIR DI + ReSTIR DI + ReSTIR DI

MAPE: 1.0079 MAPE: 0.4808 MAPE: 0.3276 MAPE: 0.2999

Path Tracing
(5 spp)

Reconnection
(2 spp)

Hybrid
(1 spp)

Reference

BistroInterior (max. path length: 11)

Time: 79.8 ms Time: 78.3 ms Time: 70.2 ms Time: 65.9 ms

MAPE: 1.1409 MAPE: 0.9576 MAPE: 0.3248 MAPE: 0.3933

Path Tracing
(8 spp)

Reconnection
(2 spp)

Hybrid
(1 spp)

Reference

Kitchen (max. path length: 5)

Time: 36.6 ms Time: 33.9 ms Time: 33.2 ms Time: 31.4 ms

MAPE: 1.1472 MAPE: 1.1817 MAPE: 0.3192 MAPE: 0.2974

Path Tracing
(9 spp)

Reconnection
(3 spp)

Hybrid
(1 spp)

Reference

VeachAjar (max. path length: 9)

Time: 43.3 ms Time: 41.4 ms Time: 45.3 ms Time: 38.8 ms

MAPE: 0.9145 MAPE: 0.8618 MAPE: 0.5332 MAPE: 0.5765

Path Tracing
(9 spp)

Reconnection
(3 spp)

Hybrid
(1 spp)

Reference

Zeroday (max. path length: 5)

Time: 75.3 ms Time: 70.9 ms Time: 68.1 ms Time: 68.1 ms

MAPE: 0.9404 MAPE: 0.7725 MAPE: 0.5847 MAPE: 0.5451

Path Tracing
(7 spp)

Reconnection
(2 spp)

Hybrid
(1 spp)

Reference

SanMiguel (max. path length: 5)

Time: 74.2 ms Time: 75.2 ms Time: 70.6 ms Time: 55.3 ms

Figure 6.13: Comparing path tracing and two variants of our ReSTIR PT (reconnection and
hybrid shift) for real-time rendering (all methods use ReSTIR DI for direct light). Images
are captured during an animation sequence. MAPE are computed using HDR images.
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ReSTIR PT from overly relying on temporal reuse for visual quality. We use no antialiasing

or denoising.

In Figure 6.13, our ReSTIR PT with either our hybrid or reconnection shifts achieves

the lowest error. Our hybrid shift significantly improves quality for glossy and refractive

surfaces, e.g., the refractive wine glasses, the mirror in SanMiguel, the metal in VeachAjar,

and the multi-layer surfaces in ZeroDay and VeachAjar scene.

Our hybrid shift also reduces noise near geometric edges (e.g., the first Kitchen inset).

But the reconnection shift outperforms when more, cheaper samples are better, e.g., on

sufficiently rough surfaces (the second Kitchen inset) or to help reduce color noise (the

second Zeroday inset).

Numerically, ReSTIR PT achieves 24% - 75% lower MAPE compared to path tracing

(both with ReSTIR DI), but we find subjective visual improvement much larger. The

supplemental material contains a result viewer for visual inspection.

Figure 6.1 compares ReSTIR PT on two complex scenes, with MAPE 16% lower than

ReSTIR GI. While ReSTIR GI handles diffuse surfaces well, glossy surfaces and refractions

and handled poorly, introducing bias. All methods in Figure 6.13 are unbiased.

Figure 6.14 compares the denoised results. Without sufficient input sample quality,

the appearance after denoising appears blurry. Our method significantly improves the

sharpness compared to the baseline, especially for specular reflections/refractions.

Baseline (5 spp) with denoising ReSTIR PT (hybrid) (1 spp) with denoising
Figure 6.14: The NRD denoiser [12] applied to both path tracing and our method using the
setup in Figure 6.13 but with a static camera (the denoiser cannot handle specular motion
vectors, lowering the quality with camera motion).
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6.8.3.3 Offline Rendering

For offline comparisons, we show 5 second equal-time renderings in representative

scenes (see Figure 6.15). In Figure 6.16 we show convergence plots (up to 640 seconds) for

all scenes. These figures show results and measure error only for indirect light.

Our ReSTIR PT with either hybrid or reconnection shifts outperforms path tracing

and BPR in both short and long rendering times. BPR outperforms path tracing except

in Zeroday, where BPR’s reconnection shifts interact poorly with the shiny multi-layer

surfaces. ReSTIR PT with reconnection shifts benefits from the amortization of sample

costs when using GRIS, converging much faster than BPR.

ReSTIR PT
Path Tracing BPR Reconnection Hybrid Reference

MAPE: 0.1587 MAPE: 0.1432 MAPE: 0.0925 MAPE: 0.0706

MAPE: 0.2320 MAPE: 0.2511 MAPE: 0.1951 MAPE: 0.2098

Figure 6.15: Visual comparison in the VeachAjar (first two rows) and Zeroday scenes using
our offline ReSTIR variant, all rendered in 5 seconds.

Figure 6.16: Offline rendering error comparison in terms of time spent on rendering (5-640
second range).
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Across our scenes, BPR reaches the same MAPE up to 2.8× faster than path tracing,

while our ReSTIR PT with the reconnection shift converges up to 14.4× faster, and ReSTIR

PT with the hybrid shift converges up to 10× faster.

Interestingly, we find our hybrid shift’s advantage in real-time rendering does not fully

transfer to offline, though both provide a large improvement over the alternate methods.

The only exception is VeachAjar, whose glossy teapots significantly benefit from the hybrid

shift mapping in equal-time comparisons.

We postulate the following explanation. While better shift maps improve spatial reuse,

they also improve temporal reuse (which improves future spatial reuse). Better temporal

reuse is thus a very beneficial investment. For offline rendering we disable temporal reuse,

losing this extra advantage from improved temporal shift maps (like our hybrid shift).

Equal-time comparisons are impacted by GPU thread divergence, as threads often trace

path of different lengths. Comparing convergence at equal sample counts (Figure 6.17)

rather than equal time, our hybrid shift is generally better than the reconnection shift,

except for caustic paths in Figure 6.11 (bottom). This suggests run-time cost is overcoming

our hybrid shift benefits. Divergence can be improved by better workload balancing and

other optimizations, which may make our hybrid shift more generally appealing.

6.9 Conclusion
We introduce a new generalized RIS (GRIS) theory, which extends resampled impor-

tance sampling [8], to enable reusing correlated paths, taken from multiple domains (pix-

els) using context-aware shift mappings. Resampling gives asymptotically perfect impor-

tance sampling according to a user-specified target function p̂; choosing p̂ = f yields

asymptotically zero-variance integration. See Figure 6.3 for a summary of key algorithmic

differences from RIS.

Figure 6.17: Offline rendering error comparison in terms of sample count.
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With this theory as a foundation, we reformulate the spatiotemporal reuse in ReSTIR.

We achieve unbiased path reuse that remains consistent even for long paths and complex

specular light transport. As in Bitterli et al. [7] and Ouyang et al. [10], our streaming

algorithms amortizes path generation over many pixels, leveraging GPU parallelism and

temporal path histories to dramatically reduce variance at interactive framerates.

Beyond better robustness from a consistent and unbiased algorithm, we further im-

prove on ReSTIR GI [10] by defining and using a new hybrid shift map to reduce noise.

This extends the toolbox of commonly-used building blocks for shift maps by accounting

for the sampled BSDF lobe and preselecting connection vertices to limit memory traffic.

Somewhat surprisingly, ReSTIR PT can even reuse simple caustic paths in many cases.

Our theory provides conditions under which we can guarantee these improvements.

Users must carefully account for domain changes using appropriate MIS weights; avoid

unbounded f / p̂ ratios; control resampling weight variance Var [∑ wi]; ensure an appro-

priate number of canonical paths to avoid undersampling parts of the domain; and, (if

accumulating frames) use a reasonable M-cap to limit temporal correlation.

Based on these design constraints, we present an interactive ReSTIR PT but also show

how to properly reuse paths spatially for consistent offline rendering. These redesigned al-

gorithms avoid unpleasant surprises, e.g., cases like Figure 6.2 where pixels may converge

slowly, if at all.

6.9.1 Future work

We believe our GRIS theory will help drive a variety of future research on resampling

and path reuse algorithms.

• Shift mappings and gradient-domain rendering. Our extended lobe-path space

could benefit shift mapping in gradient-domain problems, including for more efficient

manifold exploration [107]. Manifold exploration could also help where local shift deci-

sions prove limiting to our hybrid shift (e.g., Figure 6.11, bottom).

• Color noise. ReSTIR resamples paths using grayscale target functions | f |, which

importance samples pixel brightness but not chroma f / | f |. Modifications could perhaps

resample between wavelengths or use hero wavelengths to help with color noise.
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• MIS between shift mappings. GRIS can naturally MIS between multiple shift maps,

as it supports correlated samples. E.g., we could resample a single sample with multiple

shift maps applied, automatically giving more effective shifts higher selection probabili-

ties.

• Undersampling. GRIS, ReSTIR, and sample reuse can still suffer from undersam-

pling. In screen space implementations, like ours, reuse may be limited by undersampling

of tiny geometry or very high frequency light, e.g., sharp caustics. This can cause noise,

streaks, or splotches and requires further investigation.



CHAPTER 7

CONCLUSION

In conclusion, we have presented a series of high-quality sampling methods that target

different complex effects and show significant improvement over naive sampling and prior

work, which justify our dissertation statement that high-quality sampling is important for

rendering complex effects in real-time. More specifically:

• We have presented an extension of the lighting grid hierarchy method for efficiently

computing high-quality diffuse-dominant global illumination at real-time frame rates,

with dynamic scenes and dynamic lighting [170]. We introduce a low variance,

biased sampling mechanism that samples the shadow term from a large number of

virtual point lights, significantly improving the realism compared to prior work.

• We have presented a real-time light sampling technique for scenes with many lights,

based on a perfect binary light tree and other extensions of stochastic lightcuts [171].

Our method minimizes the cost of light sampling, allowing more light samples within

the same render time for achieving higher sampling quality. Our method signif-

icantly outperforms prior work in direct lighting of dynamic scenes with a large

number of lights.

• We have presented a sampling solution for real-time volumetric rendering using spa-

tiotemporal reservoir resampling [157]. Our solution extends resampled importance

sampling and ReSTIR to path space, enabling interactive rendering of heterogeneous

volumes in complex lighting environments. We show how biased transmittance

estimates of increasing fidelity can be injected over multiple resampling steps to pro-

duce high-quality, unbiased results at a low cost. We demonstrate an efficient GPU

implementation that renders effects that traditional real-time rendering methods fail
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to handle, like multiple scattering, while outperforming state-of-the-art sampling-

based methods.

• Finally, we have presented a new generalized RIS (GRIS) theory and developed

an algorithm, ReSTIR PT, that provides high-quality real-time rendering of general

global illumination that contains long paths and complex specular light transport.

Compared to RIS, our theory enables reusing correlated paths taken from multiple

domains (pixels) using context-aware shift mappings. With this theory as a founda-

tion, we can analyze the unbiasedness, consistency, and convergence behavior in

existing ReSTIR methods and reformulate the spatiotemporal reuse in ReSTIR to

derive a fully consistent and unbiased algorithm. Beyond achieving better robust-

ness in real-time rendering, our new algorithm further improves ReSTIR-based path

reuse (e.g., [10]) by defining a new hybrid shift map that accounts for the sampled

BSDF lobe and preselects connection vertices to limit memory traffic. This leads to a

significant sampling quality improvement compared to path tracing and prior work

in path reuse.

7.1 Outlook
The sampling methods introduced in this dissertation are all somewhat based on reuse:

we reuse lighting approximation in Chapter 3, importance sampling tree structure in Chap-

ter 4, and sampling distribution in Chapter 5 and Chapter 6. Reuse always has a chance to

fail in the presence of discontinuities. To make these algorithms more robust, reuse can be

made smarter in a data-driven way. Alternatively, future work may improve the sampling

quality before reuse. More advanced sampling algorithms including bidirectional path

tracing [172, 173, 174, 175], path guiding [176, 177], path perturbations and mutations

[178, 179], and even online machine learning [177, 156, 180, 181] can be combined with

methods proposed in this dissertation to improve their robustness.

In addition, our methods all rely on a certain extent of denoising to produce final

results. Our methods, especially those in Chapter 5 and Chapter 6, reuse information

across pixels to improve sampling quality, which is equivalent to filtering probability

distributions, introducing correlations in the noise. This correlation in the input signal is

not handled well by many existing denoisers which are crafted for i.i.d. samples produced
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by path tracing. How to design denoisers that work with the correlated samples produced

by our methods is an interesting future work.

While improving sampling algorithms is important, having hardware acceleration is

often a crucial factor to the success of algorithms in productization. The importance of

hardware support for real-time rendering has been repeatedly demonstrated in recent

years from hardware tessellation for displacement mapping [182], RT core for real-time

ray tracing [13], and Tensor core for deep-learning based denoising [14]. The research

done by me and my collaborators [183, 184, 185, 186, 187] has also shown the importance

of hardware acceleration in improving the speed and quality of real-time rendering. Even

relatively brute-force sampling can be made practical for productization with hardware

support [188]. So, redesigning or augmenting rendering hardware with the ability to

overcome the bottlenecks in more advanced algorithms like the ones we introduced will

be an important future work for these advanced sampling algorithms to fully achieve their

theoretical capability in practical use.



APPENDIX A

RIS FOR PATH INTEGRALS

This appendix provides a more rigorous derivation of the RIS estimator of the path

integral proposed in Section 5.3.3 in Chapter 5. We assume the path tracing process being a

random walk that generates n paths λi(i ∈ {1, ..., n}) that differ by lengths (or emission/s-

catter type in the volumetric case), responsible for n non-overlapping parts (
∫

Λi F(λi) dλi)

of the path integral L =
∫

Λ
F(λ) dλ (where λ can be any length or type). In other words,

L = ∑∞
i=1

∫
Λi F(λi) dλi. An ordinary 1-sample Monte Carlo estimator simply sums the

contributions from all sampled paths, i.e. 〈L〉MC = ∑n
i=1

F(λi)
p(λi)

. Note that n is a random

variable and can pick any value from 0 to ∞. We know that 〈L〉MC is an unbiased estimator

of the path integral L. However, we want to take advantage of RIS to avoid evaluating

F for all paths. The traditional form of RIS assumes that all candidate samples are taken

from the same sampling domain to estimate the same integral. Now, we want to use RIS

to estimate a sum of integrals using candidate samples taken from the sampling domain

of each integral, and only evaluate F for the chosen sample λr. This requires a slightly

different definition of RIS (the "1/M" term is removed from the estimator). We now show

that the RIS estimator

〈L〉ris =
F(λr)

p̂(λr)

n

∑
i=1

p̂(λi)

p(λi)
(A.1)

where λr is chosen from λ1, ..., λn according to the weight w(λi) = p̂(λi)
p(λi)

is also an unbiased

estimator of the path integral, i.e. E[〈L〉ris] = E[〈L〉MC]. The proof goes as follows,
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E [〈L〉ris] = E

[
E

[
F(λr)

p̂(λr)
|λ1, ..., λn

]
·

n

∑
i=1

w(λi)

]
(A.2)

= E

[
n

∑
j=1

(
F(λj)

p̂(λj)
· w(λj)

∑n
i=1 w(λi)

)
·

n

∑
i=1

w(λi)

]
(A.3)

= E

[
n

∑
j=1

F(λj)

p̂(λj)
· p̂(λj)

p(λj)

]
(A.4)

= E

[
n

∑
j=1

F(λj)

p(λj)

]
= E[〈I〉MC]. (A.5)



APPENDIX B

GENERALIZED RESAMPLED IMPORTANCE

SAMPLING NOTES

This appendix includes theorems, proofs, derivations, notes, and additional experi-

ments for generalized resampled importance sampling (Chapter 6).

B.1 Theorems
In this section, we present the most important mathematical theorems for generalized

RIS with their proofs. A proof of Theorem 1 in Section 6.4.3 is also provided here.

B.1.1 Unbiased Contribution Weights, Section 6.3.2

Theorem A.1. Let X and real-valued W be random variables in Ω. The following are equivalent:

1. For all integrable f : Ω → R,

E [ f (X)W] =
∫

supp(X)
f (x)dx, (B.1)

2. W is an unbiased estimator for X’s reciprocal marginal density,

E [W | X] =
1

pX(X)
. (B.2)

Proof. Assume Item 1: W and X are such that E[ f (X)W] =
∫

supp X f (x)dx for any inte-

grable f . We prove Item 2: Let A ⊂ supp(X) be measurable. Then,
∫

A
pX(x)dx =

∫

supp(X)
1A(x)pX(x)dx

= E [1A(X)pX(X)W] = E [E [1A(X)pX(X)W | X]]

= E [1A(X)pX(X)E [W | X]]

=
∫

A
pX(x)2 E [W | X = x]dx.

(B.3)

Since this holds for all measurable A ⊂ supp(X), we must have, almost everywhere in

supp(X),

pX(x) = pX(x)2 E [W | X = x] . (B.4)
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Since pX(x) > 0 in supp(X), we deduce E [W | X = x] = 1/pX(x) a.e. in supp(X).

Next, assume Item 2: W and X are such that E [W | X = x] = 1/pX(x) a.e. in supp(X).

We prove Item 1: Let f : Ω → R be integrable. We have

E [ f (X)W] = E [E [ f (X)W | X]] = E [ f (X)E [W | X]]

= E

[
f (X)

pX(X)

]
=

∫

supp(X)
f (x)dx.

(B.5)

B.1.2 Asymptotic Sample Distribution, Section 6.3.4

Theorem A.2 (Asymptotic Sample Distribution). Assume, for each M (separately, starting

from some M0) a sequence of samples (Xi ∈ Ωi)
M
i=1 (we omit the index M for brevity), and that we

resample YM (=TsM(XsM)) proportionally to weights wM,i given by Equation 6.19. Assume also

that the generated samples cover the support of p̂,

supp p̂ ⊂ supp YM when M ≥ M0. (B.6)

If the variance of the weight sums tends to zero, i.e.,

Var

[
M

∑
i=1

wM,i

]
M→∞−−−→ 0, (B.7)

Then,

1. pY converges to p̄ in probability, i.e., for any ε > 0

Pr[|pY(Y)− p̄(Y)| > ε]
M→∞−−−→ 0. (B.8)

2. the density ratio p̄(Y)/pY(Y) approaches 1 in mean square, i.e.,

E

[∣∣∣∣
p̄(Y)

pY(Y)
− 1

∣∣∣∣
2
]

M→∞−−−→ 0. (B.9)

3. the integral of the absolute error of pY from p̄ approaches 0, i.e.,

∫

Ω
|pY(y)− p̄(y)|dy M→∞−−−→ 0. (B.10)

4. in the set in which pY(y) converges, it converges to p̄(y) (except for a possible set of zero

measure).
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5. each subset of Ω will asymptotically get the correct ratio of samples.

Proof. We start from Equation 6.22 and derive the equality

M

∑
i=1

wi = p̂(Y)WY. (B.11)

We then prove the following, slightly more general result: If (YM)∞
M=M0

is a sequence of

random variables that fulfill supp p̂ ⊂ supp YM (Equation B.6) and have non-negative

unbiased contribution weights WYM such that

Var
[
p̂(YM)WYM

] M→∞−−−→ 0 (B.12)

(a generalization of Equation B.7), then the conclusions of Theorem A.2 hold:

Proof of Theorem A.2 (Item 1), Equation B.8. Let ε > 0 be given. We prove that

Pr[|pY(Y)− p̄(Y)| > ε]
M→∞−−−→ 0 :

For any 0 < ε2 < 1 we have

Pr [| p̄(Y)− pY(Y)| > ε] = A + B + C, where (B.13)

A = Pr
[(

| p̄(Y)− pY(Y)| > ε

)
∧
(

pY(Y) ≥
1
ε2

)]
,

B = Pr
[(

| p̄(Y)− pY(Y)| > ε

)
∧
(

1 < pY(Y) <
1
ε2

)]
,

C = Pr
[(

| p̄(Y)− pY(Y)| > ε

)
∧
(

pY(Y) ≤ 1
)]

.

Since Pr [X ∧ Y] ≤ Pr [Y] and pY integrates to 1, we have

A ≤ Pr
[

pY(Y) ≥
1
ε2

]
≤ ε2

(otherwise pY would integrate to more than ε2 · 1/ε2 = 1). Since in case B we have

1/pY(Y) > ε2, we get

B = Pr
[(

| p̄(Y)− pY(Y)| ε2 > ε · ε2

)
∧
(

1 < pY(Y) <
1
ε2

)]

≤ Pr
[(

| p̄(Y)− pY(Y)|
pY(Y)

> ε · ε2

)
∧
(

1 < pY(Y) <
1
ε2

)]

≤ Pr
[∣∣∣∣

p̄(Y)
pY(Y)

− 1
∣∣∣∣ > ε · ε2

]
.



146

Similarly, in case C we have 1/pY(Y) ≥ 1, and thus

C = Pr
[(

| p̄(Y)− pY(Y)| > ε

)
∧
(

pY(Y) ≤ 1
)]

≤ Pr
[∣∣∣∣

p̄(Y)
pY(Y)

− 1
∣∣∣∣ > ε

]
.

By Chebyshev’s inequality, we have for any s > 0 (such as s = ε · ε2 for B and s = ε for

C), that

Pr
[∣∣∣∣

p̄(Y)
pY(Y)

− 1
∣∣∣∣ > s

]
<

1
s2 E

[∣∣∣∣
p̄(Y)

pY(Y)
− 1

∣∣∣∣
2
]

M→∞−−−→ 0, (B.14)

and thus

0 ≤ lim
M→∞

A + B + C ≤ ε2 + 0 + 0
ε2→0−−−→ 0, (B.15)

i.e.,

Pr [| p̄(Y)− pY(Y)| > ε]
M→∞−−−→ 0. (B.16)

�

Proof of Theorem A.2 (Item 2), Equation B.9. By assumption, we have supp p̂ ⊂ supp YM for

each M. Dropping the index M for brevity, we thus have

E

[
p̂(Y)

pY(Y)

]
=

∫

supp Y
p̂(y)dy = ‖ p̂‖. (B.17)

Thus, we deduce from the law of total variance that

Var
[
p̂(Y)WY

]
= E

[
Var [ p̂(Y)WY | Y]

]
+ Var

[
E [ p̂(Y)WY | Y]

]

≥ Var
[
E [ p̂(Y)WY | Y]

]
= Var

[
p̂(Y)

pY(Y)

]

= E

[∣∣∣∣
p̂(Y)

pY(Y)
− ‖ p̂‖

∣∣∣∣
2
]

. (B.18)

Since Var[ p̂(Y)WY] by assumption tends to 0, we reach convergence of pY to p̄ in mean

square:

E

[∣∣∣∣
p̄(Y)

pY(Y)
− 1

∣∣∣∣
2
]
=

1
‖ p̂‖2 E

[∣∣∣∣
p̂(Y)

pY(Y)
− ‖ p̂‖

∣∣∣∣
2
]

≤ 1
‖ p̂‖2 Var

[
p̂(Y)WY

] M→∞−−−→ 0. (B.19)

�
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Proof of Theorem A.2 (Item 3), Equation B.10. By the Cauchy-Schwarz inequality, convergence

of a random variable in mean-square implies convergence in mean:

E [|Zi − Z∞|] ≤
√

E [12]

√
E
[
|Zi − Z∞|2

]
i→∞−−→ 0. (B.20)

By Equation B.9, E
[∣∣∣ p̄(Y)

pY(Y)
− 1

∣∣∣
]

M→∞−−−→ 0. Since we have supp p̂ ⊂ supp Y, we have

pY(y)− p̂(y) = 0 − 0 outside of supp Y for all M, and thus

∫

Ω
|pY(y)− p̄(y)|dy =

∫

supp Y
|pY(y)− p̄(y)|dy

= E

[∣∣∣∣
p̄(Y)

pY(Y)
− 1

∣∣∣∣
]

M→∞−−−→ 0. (B.21)

�

Proof of Theorem A.2 (Item 4). Let G be the set of y ∈ Ω for which pYM(y) converges, and let

g(y) be the limit, i.e.,

g(y) = lim
M→∞

pYM(y) for all y ∈ G. (B.22)

All subsequences pYak
(y) also converge pointwise to g(y) in G. By Equation B.10, pY(y)

converges to p̄ in the Lebesgue L1 sense:

‖ p̄(y)− pYM(y)‖L1 =
∫

Ω
| p̄(y)− pYM(y)|dy M→∞−−−→ 0. (B.23)

Since pYM converges to p̄ in the L1-norm, it converges also in the L1-measure [189, p. 69].

Thus, it has a subsequence pYak
that converges to p̄ almost everywhere [189, p. 69]. But

if y ∈ G, then pYak
(y) also converges to g(y), so we must have g(y) = p̄(y) almost

everywhere in G. �

Proof of Theorem A.2 (Item 5). Let X be distributed with PDF p̄ and A be an arbitrary mea-

surable subset of Ω. Then, by Theorem A.2 (Item 3),

|Pr [Y ∈ A]− Pr [X ∈ A]| =
∣∣∣∣
∫

A
pY(y)dy −

∫

A
p̄(y)dy

∣∣∣∣
≤

∫

Ω
|pY(y)− p̄(y)|dy M→∞−−−→ 0.

�
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B.1.3 Asymptotic Variance, Section 6.4.2

Theorem A.3 (Asymptotic Variance). In addition to the assumptions of Theorem A.2, assume

that f ≥ 0 and

f ≤ Cf p̂ for some Cf > 0. (B.24)

Then, the generated samples Y cover the support of p̂ and f , and

1. f (Y)WY approaches f (Y)/ p̄(Y) in mean, mean square and probability, i.e.,

E

[∣∣∣∣ f (Y)WY − f (Y)
p̄(Y)

∣∣∣∣
p]

M→∞−−−→ 0 for p = 1, 2, and (B.25)

Pr
[∣∣∣∣ f (Y)WY − f (Y)

p̄(Y)

∣∣∣∣ > ε

]
M→∞−−−→ 0 for all ε > 0. (B.26)

2. f (Y)WY has asymptotically the variance of f (X)/ p̄(X) where X has density p̄(X),

Var [ f (Y)WY]
M→∞−−−→ Var

[
f (X)

p̄(X)

]
. (B.27)

3. If p̂(x) ∝ f (x), then also

Var [ f (Y)WY]
M→∞−−−→ 0. (B.28)

Proof. We first prove the support and then Item 1 – Item 3:

Proof of Theorem A.3, support. By assumption (Equation B.6), supp p̂ ⊂ supp YM for all M.

We also assume f ≤ Cf p̂ for some Cf > 0. Thus, f (x) > 0 implies p̂(x) > 0, and we have

supp f ⊂ supp p̂ ⊂ supp YM. �

Proof of Theorem A.3 (Item 1), Equation B.25 and Equation B.26. We first prove convergence in

mean square:

E

[∣∣∣∣ f (Y)WY − f (Y)
p̄(Y)

∣∣∣∣
2
]
= E



∣∣∣∣∣

f (Y)
p̂(Y)

M

∑
i=1

wM,i −
f (Y)
p̄(Y)

∣∣∣∣∣
2



= E


 f (Y)2

p̂(Y)2

∣∣∣∣∣
M

∑
i=1

wM,i −
p̂(Y)
p̄(Y)

∣∣∣∣∣
2

 = E


 f (Y)2

p̂(Y)2

∣∣∣∣∣
M

∑
i=1

wM,i − ‖ p̂‖
∣∣∣∣∣
2



≤ C2
f E



∣∣∣∣∣

M

∑
i=1

wM,i − ‖ p̂‖
∣∣∣∣∣
2

 = C2

f Var

[
M

∑
i=1

wM,i

]
M→∞−−−→ 0.
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Convergence in mean square implies convergence in mean and in probability. E.g., by

Chebyshev’s inequality, given ε > 0, we have

Pr
[∣∣∣∣ f (Y)WY − f (Y)

p̄(Y)

∣∣∣∣ > ε

]
≤ 1

ε2 E

[∣∣∣∣ f (Y)WY − f (Y)
p̄(Y)

∣∣∣∣
2
]

M→∞−−−→ 0.

�

Proof of Theorem A.3 (Item 2), Equation B.27. We proceed in three steps.

• Step 1. We show that

Var [ f (Y)WY]− Var
[

f (Y)
pY(Y)

]
M→∞−−−→ 0. (B.29)

From the law of total variance we get

Var
[

f (Y)WY
]
= Var

[
E [ f (Y)WY|Y]

]
+ E

[
Var [ f (Y)WY | Y]

]
,

which we rewrite as

E
[
Var [ f (Y)WY | Y]

]
= Var

[
f (Y)WY

]
− Var

[
E [ f (Y)WY|Y]

]

= Var
[

f (Y)WY
]
− Var

[
f (Y)

pY(Y)

]
.

Since a conditional variance is non-negative, and we have

0 ≤ Var
[

f (Y)WY
]
− Var

[
f (Y)

pY(Y)

]
= E

[
Var [ f (Y)WY | Y]

]

= E

[
Var

[
f (Y)

pY(Y)

M

∑
i=1

wM,i | Y

]]
= E

[
f (Y)2

p̂(Y)2 Var

[
M

∑
i=1

wM,i | Y

]]

≤ C2
f E

[
Var

[
M

∑
i=1

wM,i | Y

]]
(B.30)

≤ C2
f

(
E

[
Var

[
M

∑
i=1

wM,i | Y

]]
+ Var

[
E

[
M

∑
i=1

wM,i | Y

]])

= C2
f Var

[
M

∑
i=1

wM,i

]
M→∞−−−→ 0.
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• Step 2. We show that

Var
[

f (X)

p̄(X)

]
− Var

[
f (Y)

pY(Y)

]
M→∞−−−→ 0 (B.31)

where X has density p̄(x). We start by writing

Var
[

f (X)

p̄(X)

]
− Var

[
f (Y)

pY(Y)

]

= E

[
f (X)2

p̄(X)2

]
− E

[
f (X)

p̄(X)

]2

− E

[
f (Y)2

pY(Y)2

]
+ E

[
f (Y)

pY(Y)

]2

(B.32)

= E

[
f (X)2

p̄(X)2

]
− E

[
f (Y)2

pY(Y)2

]
.

(B.33)

Since supp Y ⊂ supp p̂ (Equation 6.15) and we assume supp p̂ ⊂ supp Y, we have supp p̂ =

supp Y. With supp p̄ = supp p̂, we continue the above as

=
∫

supp Y
p̄(x)

f (x)2

p̄(x)2 dx −
∫

supp Y
pY(y)

f (y)2

pY(y)2 dy

=
∫

supp Y
p̄(y)

f (y)2

p̄(y)2 − pY(y)
f (y)2

pY(y)2 dy

=
∫

supp Y
pY(y)

(
f (y)2

p̄(y)2

)(
p̄(y)

pY(y)
− p̄(y)2

pY(y)2

)
dy

= E

[
f (Y)2

p̄(Y)2

(
p̄(Y)

pY(Y)
− p̄(Y)2

pY(Y)2

)]
,

and thus,
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∣∣∣∣Var

[
f (X)

p̄(X)

]
− Var

[
f (Y)

pY(Y)

]∣∣∣∣

≤ E

[
f (Y)2

p̄(Y)2

∣∣∣∣
p̄(Y)

pY(Y)
− p̄(Y)2

pY(Y)2

∣∣∣∣
]

≤ ‖ p̂‖2C2
f E

[∣∣∣∣
p̄(Y)

pY(Y)
− p̄(Y)2

pY(Y)2

∣∣∣∣
]

= ‖ p̂‖2C2
f E

[∣∣∣∣1 −
(

1 − p̄(Y)
pY(Y)

)∣∣∣∣
∣∣∣∣1 −

p̄(Y)
pY(Y)

∣∣∣∣
]

≤ ‖ p̂‖2C2
f E

[(
1 +

∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
) ∣∣∣∣1 −

p̄(Y)
pY(Y)

∣∣∣∣
]

= ‖ p̂‖2C2
f

(
E

[∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
]
+ E

[∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
2
])

≤ ‖ p̂‖2C2
f



√√√√E

[∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
2
]
+ E

[∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
2
]
 (B.34)

M→∞−−−→ 0

by Theorem A.2 (Item 2).

• Step 3. Combining steps 1 and 2, we reach

Var [ f (Y)WY]− Var
[

f (X)

p̄(X)

]
(B.35)

=

(
Var [ f (Y)WY]− Var

[
f (Y)

pY(Y)

])
−

(
Var

[
f (X)

p̄(X)

]
− Var

[
f (Y)

pY(Y)

])

M→∞−−−→ 0.

�

Proof of Theorem A.3 (Item 3). Substituting p̂(x) = C f (x), i.e., p̄(x) = f (x)/‖ f ‖, to the

previous result, yields

Var [ f (Y)WY]− Var
[

f (X)‖ f ‖
f (X)

]
M→∞−−−→ 0,

i.e.,

Var [ f (Y)WY]
M→∞−−−→ 0.

�
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B.1.4 Resampling Weight Bounds, Section 6.4.6

Theorem A.4 (Resampling Weight Bounds). Let the resampling weights wi of input samples

Xi be given by Equation 6.19, and associate all source domains Ωi with target distributions p̂i. Let

R be the indices of the canonical samples, and assume |R| ≥ 1.

If mi are given by one of the MIS weight schemes defined in Equations 6.36, 6.37 or 6.38, and

sample Xi is reasonably distributed for integrating p̂i (i.e., p̂i(Xi)Wi ≤ Ci for some Ci), then the

resampling weight of Xi is bounded as

wi ≤
Ci

|R| . (B.36)

Proof. Section B.4.3.

B.1.5 Proof of Theorem 1, Section 6.4.3

Proof. We continue the proof of Theorem A.3 (Item 2), and deduce

Var [ f (Y)WY]− Var
[

f (X)

p̄(X)

]

= Var [ f (Y)WY]− Var
[

f (Y)
pY(Y)

]
+ Var

[
f (Y)

pY(Y)

]
− Var

[
f (X)

p̄(X)

]

≤ Var [ f (Y)WY]− Var
[

f (Y)
pY(Y)

]
+

∣∣∣∣Var
[

f (Y)
pY(Y)

]
− Var

[
f (X)

p̄(X)

]∣∣∣∣ .

We denote V = Var
[
∑M

i=1 wi

]
and derive from Equation B.18 in the proof of Theo-

rem A.2 that

E

[∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
2
]
≤

Var
[
p̂(Y)WY

]

‖ p̂‖2 =
V

‖ p̂‖2 . (B.37)

We combine this with Equation B.34 to get
∣∣∣∣Var

[
f (X)

p̄(X)

]
− Var

[
f (Y)

pY(Y)

]∣∣∣∣ (B.38)

≤ ‖ p̂‖2C2
f



√√√√E

[∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
2
]
+ E

[∣∣∣∣1 −
p̄(Y)

pY(Y)

∣∣∣∣
2
]
 (B.39)

≤ ‖ p̂‖2C2
f

(√
V

‖ p̂‖2 +
V

‖ p̂‖2

)
= C2

f

(
‖ p̂‖

√
V + V

)
. (B.40)

We then borrow from Equation B.30 that

0 ≤ Var
[

f (Y)WY
]
− Var

[
f (Y)

pY(Y)

]
≤ C2

f Var

[
M

∑
i=1

wi

]
= C2

f V,
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and reach

Var [ f (Y)WY]− Var
[

f (X)

p̄(X)

]

≤ Var [ f (Y)WY]− Var
[

f (Y)
pY(Y)

]
+

∣∣∣∣Var
[

f (Y)
pY(Y)

]
− Var

[
f (X)

p̄(X)

]∣∣∣∣ .

≤ C2
f V + C2

f

(
‖ p̂‖

√
V + V

)
= C2

f

√
V
(
‖ p̂‖+ 2

√
V
)

. (B.41)

B.2 Convergence With Dependent Samples
In Section 6.4.7 we assume dependent input samples such that

1. the ratio of canonical samples, |R| /M, never falls below a positive constant γ for

large enough M,

2. there exists a C > 0 such that wi ≤ C/ |R| for all i,

3. there exists a non-negative sequence bk such that the correlation ρi,i+k ≤ bk for all i,

and bk −→ 0.

Then,

Var

[
M

∑
i=1

wi

]
=

M

∑
i=1

Var [wi] + 2
M

∑
i=1

M−i

∑
k=1

Cov(wi, wi+k) (B.42)

converges to zero:

The convergence of the first term is proved in Section 6.4.7, and for the second term we

have

M

∑
i=1

M−i

∑
k=1

Cov(wi, wi+k) =
M

∑
i=1

M−i

∑
k=1

ρi,i+k
√

Var wi Var wi+k (B.43)

≤
M

∑
i=1

M−i

∑
k=1

max(0, ρi,i+k)
C2

4 |R|2
≤

M

∑
i=1

M−i

∑
k=1

bk
C2

4M2γ2 , (B.44)

=
C2

4γ2
1

M2

M

∑
k=1

M−k

∑
i=1

bk =
C2

4γ2
1

M2

M

∑
k=1

(M − k)bk (B.45)

≤ C2

4γ2

(
1
M

M

∑
k=1

bk

)
M→∞−−−→ 0. (B.46)

To reach Equation B.44, we used Popoviciu’s inequality: since 0 ≤ wi ≤ C/ |R|, we know

Var wi ≤ C2

4|R|2
. The next step used |R| /M ≥ γ, and for Equation B.45 we reversed the
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summation order: ∑M
i=1 ∑M−i

k=1 = ∑M
k=1 ∑M−k

i=1 . The mean of bk converges to zero since bk

converges to zero, and Equation B.46 implies

Var

[
M

∑
i=1

wi

]
M→∞−−−→ 0.

We can slightly generalize the result: assume that

|R| ≥ cM M0.5

√√√√ M

∑
i=1

bi , (B.47)

where (cM) is any non-negative sequence that approaches infinity. Then, like above,

M

∑
i=1

M−i

∑
k=1

Cov(wi, wi+k) ≤
M

∑
i=1

M−i

∑
k=1

max(0, ρi,i+k)
C2

4 |R|2
(B.48)

=
M

∑
k=1

M−k

∑
i=1

max(0, ρi,i+k)
C2

4 |R|2
≤

M

∑
k=1

(M − k)bk
C2

4 |R|2
(B.49)

≤
(

M

∑
k=1

bk

)
MC2

4 |R|2
≤

(
M

∑
k=1

bk

)
MC2

4c2
M M

(
∑M

i=1 bi

) (B.50)

=
C2

4c2
M

M→∞−−−→ 0. (B.51)

B.3 Mathematical Notes
B.3.1 Constraints on wi for Zero Bias in Section 6.3.3

We assume, according to the section, that

gi(x) = [x ∈ D(Ti)] ci(yi) · f (yi)

∣∣∣∣
∂Ti

∂x

∣∣∣∣ ,

where yi is a shorthand for Ti(x), and [·] is 1 if · is true and 0 otherwise, and that either

• (easy case) wi > 0 exactly when Xi ∈ D(Ti) and Yi = Ti(Xi) ∈ supp p̂, otherwise

wi = 0, or

• (general case) wi are also allowed to be 0 also when ci(Yi) = 0 or Wi = 0, and

Equation 6.17 holds for all y ∈ supp p̂ ∩⋃M
i=1 Ti(supp Xi).
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Then, we show that the derived estimator is unbiased,

E

[
gs(Xs)

∑M
j=1 wj

ws
f (Xs)Ws

]
=

∫

supp Y
f (y)dy, (B.52)

and that Equation 6.15 holds, i.e.,

supp Y = supp p̂ ∩
M⋃

i=1

Ti(supp Xi). (B.53)

Let us first prove Equation B.53 in both cases.

Proof. Easy case. If y ∈ supp p̂ ∩ ⋃M
i=1 Ti(supp Xi), then y = Ti(xi) for some xi ∈ supp Xi

where xi can be sampled with a positive PDF. Since also y ∈ supp p̂, we have p̂(y) =

p̂(Ti(xi)) > 0, and therefore by assumption wi > 0. Thus, we have an xi with positive

PDF, wi > 0, and y = Ti(xi), and we have a way of sampling y with a positive PDF, i.e.,

y ∈ supp Y. We showed that supp p̂ ∩⋃M
i=1 Ti(supp Xi) ⊂ supp Y.

If, on the other hand, y ∈ supp Y, the PDF of sampling y is positive. Thus, there exists

an xi with a positive PDF and a positive selection probability for y = Ti(xi). Hence wi > 0,

which implies p̂(y) > 0, and hence y ∈ supp p̂ ∩ ⋃M
i=1 Ti(supp Xi). Combined with the

previous, we have supp Y = supp p̂ ∩⋃M
i=1 Ti(supp Xi).

General case. Let y ∈ supp p̂ ∩ ⋃M
i=1 Ti(supp Xi). Let I be the set of indices for which

y ∈ Ti(supp Xi). Since ∑i∈I ci(y) = 1 by assumption, there exists at least one i such

that ci(y) > 0, and therefore an xi such that y = Ti(xi) with pXi(xi) > 0. Since 0 <

pXi(xi) = 1/ E [Wi | Xi = xi], the conditional expectation of Wi is positive and hence we

have Pr [Wi > 0 | Xi = xi] > 0 and pY(y) > 0, i.e., y ∈ supp Y.

Assume then that y ∈ supp Y. The PDF of generating y is positive, so there have

to exist i and xi ∈ Ωi such that pXi(xi) > 0, y = Ti(xi), and with a positive condi-

tional probability wi > 0. If wi may be positive, it follows that y ∈ supp p̂, and hence

y ∈ supp p̂ ∩ ⋃M
i=1 Ti(supp Xi). Combined with the previous, we have supp Y = supp p̂ ∩

⋃M
i=1 Ti(supp Xi).

Next, we will prove Equation B.52.
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Proof. First,

E

[
gs(Xs)

∑M
j=1 wj

ws
Ws

]
(B.54)

= E

[
M

∑
s=1

[ws > 0]
ws

∑M
j=1 wj

gs(Xs)
∑M

j=1 wj

ws
Ws

]
(B.55)

= E

[
M

∑
s=1

[ws > 0]gs(Xs)Ws

]
. (B.56)

Next, we substitute the definition of gs and reach

= E

[
M

∑
s=1

[ws > 0][Xs ∈ D(Ts)] cs(Ys) f (Ys)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣Ws

]
. (B.57)

We add in the assumption which holds in both cases, ws = 0 if p̂(Ys) = 0, and reach

= E

[
M

∑
s=1

[Ys ∈ supp p̂][ws > 0][Xs ∈ D(Ts)] cs(Ys) f (Ys)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣Ws

]
. (B.58)

Next we substitute [ws > 0] = 1 − [ws = 0], and reach

= E

[
M

∑
s=1

[Ys ∈ supp p̂][Xs ∈ D(Ts)] cs(Ys) f (Ys)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣Ws

]

− E

[
M

∑
s=1

[Ys ∈ supp p̂][ws = 0][Xs ∈ D(Ts)] cs(Ys) f (Ys)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣Ws

]
. (B.59)

Using the definition of unbiased contribution weights (everything except Ws is a func-

tion of Xs), we get for the first term,

E

[
M

∑
s=1

[Ys ∈ supp p̂][Xs ∈ D(Ts)] cs(Ys) f (Ys)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣Ws

]
(B.60)

=
M

∑
s=1

∫

supp Xs

[ys ∈ supp p̂][xs ∈ D(Ts)] cs(ys) f (ys)

∣∣∣∣
∂Ts

∂xs

∣∣∣∣dxs (B.61)

=
M

∑
s=1

∫

D(Ts)
[ys ∈ supp p̂][xs ∈ supp Xs] cs(ys) f (ys)

∣∣∣∣
∂Ts

∂xs

∣∣∣∣dxs, (B.62)

which, with a change of variables y = Ts(xs) for each of the terms, and then denoting

xs = T−1
s (y), simplifies into

=
M

∑
s=1

∫

I(Ts)
[y ∈ supp p̂][xs ∈ supp Xs] cs(y) f (y)dy (B.63)

=
M

∑
s=1

∫

supp p̂
[y ∈ I(Ts)][xs ∈ supp Xs] cs(y) f (y)dy (B.64)

=
∫

supp p̂

(
M

∑
s=1

[y ∈ I(Ts)][x ∈ supp Xs] cs(y)

)
f (y)dy. (B.65)
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We then write the product of the brackets as a summation condition and reach

=
∫

supp p̂




M

∑
s=1

y∈Ts(supp Xs)

cs(ys)


 f (y)dy (B.66)

=
∫

supp p̂∩⋃
i Ti(supp Xi)




M

∑
s=1

y∈Ts(supp Xs)

cs(ys)


 f (y)dy (B.67)

=
∫

supp Y




M

∑
s=1

y∈Ts(supp Xs)

cs(y)


 f (y)dy (B.68)

=
∫

supp Y
f (y)dy. (B.69)

(B.70)

For the method be unbiased for integrating f over supp Y, the second term,

E

[
M

∑
s=1

[Ys ∈ supp p̂][ws = 0][Xs ∈ D(Ts)] cs(Ys) f (Ys)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣Ws

]
,

must be zero.

For the easier case, wi > 0 if and only if Xi ∈ D(Ti) and Yi = Ti(Xi) ∈ supp p̂. The

above second term contains for each s the factor

[Ys ∈ supp p̂][Xs ∈ D(Ts)][ws = 0] (B.71)

= [ws > 0][ws = 0] = 0, (B.72)

and thus the second term is zero and the estimator is unbiased.

For the general case, wi is additionally allowed to be 0 when either Wi = 0 or ci(Yi) = 0.

The second term is also then zero: for it to be non-zero, we need to have ws = 0 for some

s. However, if ws = 0, then by assumption, either Xs /∈ D(Ts), Ys /∈ supp p̂, cs(Ys) = 0, or

Ws = 0. It is easy to check all these cases: in all cases the second term is zero. The estimator

is unbiased.

B.3.2 Non-Negativity of mi and Wi in Section 6.3.4

Here we prove that in Equation 6.19, we must require mi ≥ 0 and Wi ≥ 0 to guarantee

non-negative probabilities.
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Proof. The selection probabilities Pr [s = i] = wi/ ∑M
j=1 wj all need to be non-negative.

They are divided by the same denominator, which flips the sign of either none or all the

wi/ ∑M
j=1 wj expressions. Therefore, all wi must have the same sign, so that the probabilities

can all be non-negative. If we had wi ≤ 0 for all i, we could simply flip the signs of the wi

to reach wi ≥ 0; without loss of generality, we restrict ourselves to the case wi ≥ 0.

If it is the case that wi ≥ 0, then it is also the case that

E [wi | Xi] ≥ 0 (B.73)

almost surely.

Next, we substitute Equation 6.19 for wi. If x /∈ D(Ti), we have wi = 0. Otherwise,

denoting y = Ti(x) and Yi = Ti(Xi), we must have

0 ≤ E [wi | Xi = x] = E

[
mi(Yi) p̂(Yi)Wi

∣∣∣∣
∂Ti

∂Xi

∣∣∣∣ | Xi = x
]

(B.74)

= mi(y) p̂(y)
∣∣∣∣
∂Ti

∂x

∣∣∣∣E [Wi | Xi = x] (B.75)

= mi(y) p̂(y)
∣∣∣∣
∂Ti

∂x

∣∣∣∣
1

pXi(x)
. (B.76)

Since p̂(y),
∣∣∣ ∂Ti

∂x

∣∣∣ and pXi(x) are all non-negative and the full product is non-negative, mi(y)

must also be non-negative.

Looking at Equation 6.19, since we have mi ≥ 0, p̂(y) ≥ 0 and
∣∣∣ ∂Ti

∂x

∣∣∣ ≥ 0, and their

product with Wi is wi ≥ 0, we must also have Wi ≥ 0.

B.3.3 Resampling MIS Must Be Positive in Support
of ci in Section 6.3.4

To guarantee unbiased integration, the resampling MIS weights mi must fulfill mi(y) >

0 whenever ci(y) �= 0 in addition to non-negativity and Equation 6.20:

Proof. Substituting gi into the left-hand-side of Equation 6.10 yields

E

[
gs(Xs)

∑M
j=1 wj

ws
Ws

]
= E

[
[ws > 0]gs(Xs)

∑M
j=1 wj

ws
Ws

]
(B.77)

= E

[
M

∑
s=1

[ws > 0]
ws

∑M
j=1 wj

gs(Xs)
∑M

j=1 wj

ws
Ws

]
(B.78)

=
M

∑
s=1

E [[ws > 0]gs(Xs)Ws] . (B.79)
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We know that ws (Equation 6.19) is positive if and only if Xs ∈ D(Ts), ms(Ys) > 0, p̂(Ys) >

0, Ws > 0 and
∣∣∣ ∂Ts

∂Xs

∣∣∣ > 0. We assume Ws ≥ 0, and the case Ws = 0 is already handled by

the factor Ws. The Jacobian determinant is nonzero with probability 1 in D(Ti) since Ti is

bijective. Hence, substituting gs, we reach

=
M

∑
s=1

E

[
[Xs ∈ D(Ts)][ms(Ys), p̂(Ys) > 0] cs(Ys) f (Ys)

∣∣∣∣
∂Ts

∂Xs

∣∣∣∣Ws

]
.

Everything left from the unbiased contribution weight Ws is a function of Xs. Hence, by

the definition of unbiased contribution weights, we reach

=
M

∑
s=1

∫

supp Xs

[xs ∈ D(Ts)][ms(ys), p̂(ys) > 0] cs(ys) f (ys)

∣∣∣∣
∂Ts

∂xs

∣∣∣∣dxs.

Swapping the integration domain and [xs ∈ D(Ts)], we reach

=
M

∑
s=1

∫

D(Ts)
[xs ∈ supp Xs][ms(ys), p̂(ys) > 0] cs(ys) f (ys)

∣∣∣∣
∂Ts

∂xs

∣∣∣∣dxs,

and the change of variables y = Ts(xs) yields

=
M

∑
s=1

∫

I(Ts)
[xs ∈ supp Xs][ms(y), p̂(y) > 0] cs(y) f (y)dy.

Swapping the integration domain and [ p̂(y) > 0] yields

=
M

∑
s=1

∫

supp p̂
[xs ∈ supp Xs][y ∈ I(Ts)][ms(y) > 0] cs(y) f (y)dy,

which allows moving the sum inside the integral:

=
∫

supp p̂

(
M

∑
s=1

[xs ∈ supp Xs][y ∈ I(Ts)][ms(y) > 0] cs(y)

)
f (y)dy.

Next, we simplify the first two indicators into the summation condition:

=
∫

supp p̂




M

∑
s=1

y∈Ts(supp Xs)

[ms(y) > 0] cs(y)


 f (y)dy. (B.80)

The integrand is zero unless the sum contains at least one index and we can shrink the

integration domain accordingly:

=
∫

supp p̂∩
M⋃

i=1
Ti(supp Xi)




M

∑
s=1

y∈Ts(supp Xs)

[ms(y) > 0] cs(y)


 f (y)dy.
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By Equation 6.15, this domain is exactly supp(Y):

=
∫

supp Y




M

∑
s=1

y∈Ts(supp Xs)

[ms(y) > 0] cs(y)


 f (y)dy. (B.81)

Finally, if we assume ms(y) > 0 whenever cs(y) �= 0, by the constraint of the contribution

MIS weights (Equation 6.17), we reach

=
∫

supp Y




M

∑
s=1

y∈Ts(supp Xs)

cs(y)


 f (y)dy (B.82)

=
∫

supp Y
f (y)dy. (B.83)

If we assumed a non-zero probability that ms(y) = 0 while cs(y) �= 0, the multiplier in

front of f (y) in Equation B.81 would not simplify to 1 with the constraints of ci, and the

result would be wrong.

B.4 Derivation of the Resampling MIS Weights
In this section we first derive the generalized Talbot MIS (Equation 6.36) and Pairwise

MIS (Equation 6.37, Equation 6.38) weights from the requirement that the resampling

weights wi given by Equation 6.19 must have a finite upper bound.

We then derive the upper bounds for the resampling weights wi with the above MIS

weights schemes, and for variants of the MIS weights that use tractable PDFs pi instead of

p̂i.

We assume that of the M input samples Xi, indices in the set R are canonical (Defi-

nition 6.4.2), i.e., their domain is Ω, the shift mapping is identity, and the target density

p̂i = p̂. The number of canonical samples is denoted |R|.

B.4.1 Generalizing Talbot MIS Weights

We first require that the resampling weights stay bounded, and derive MIS weights

mi that fulfill this condition. Denote Yi = Ti(Xi) and assume that Yi ∈ Ti(supp Xi). The

resampling weight of Xi is then, by Equation 6.19,

wi = mi(Yi) · p̂(Yi)Wi ·
∣∣∣∣

∂Yi

∂Xi

∣∣∣∣ . (B.84)
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Assuming that p̂i(Xi)Wi ≤ Ci, we can bound the above as

wi = mi(Yi) ·
p̂(Yi) p̂i(Xi)Wi

p̂i(Xi)
·
∣∣∣∣

∂Yi

∂Xi

∣∣∣∣ (B.85)

≤ mi(Yi) ·
p̂(Yi)Ci

p̂i(Xi)
·
∣∣∣∣

∂Yi

∂Xi

∣∣∣∣ . (B.86)

We require this to be at most some C̃i, which we may choose freely as long as we still find

suitable functions mi. Then, wi ≤ C̃i will also hold:

wi ≤ mi(Yi) ·
p̂(Yi)Ci

p̂i(Xi)
·
∣∣∣∣

∂Yi

∂Xi

∣∣∣∣ ≤ C̃i. (B.87)

The latter inequality is equivalent to

mi(Yi) ≤
C̃i

Ci

p̂i(Xi)
∣∣∣ ∂Yi

∂Xi

∣∣∣
−1

p̂(Yi)
. (B.88)

We observe that if j is any canonical index, then we have p̂(Yi) = p̂j(T−1
j (Yi))

∣∣∣∣
∂T−1

j
∂Yi

∣∣∣∣, and

the numerator and denominator begin to look similar:

mi(Yi) ≤
C̃i

Ci

p̂i

(
T−1

i (Yi)
) ∣∣∣∣

∂T−1
i

∂Yi

∣∣∣∣

p̂j(T−1
j (Yi))

∣∣∣∣
∂T−1

j
∂Yi

∣∣∣∣
=

C̃i

Ci

p̂←i(Yi)

p̂←j(Yi)
. (B.89)

Writing the expressions in terms of p̂←i and p̂←j is justified since Yi = Ti(Xi) was sampled

(hence Yi ∈ Ti(supp Xi)), which implies Yi ∈ supp p̂. Since j is a canonical index, supp p̂ ⊂

supp Xj = supp Tj(supp Xj), and hence Yi ∈ supp Tj(Xj).

If mi is such that it fulfills the above inequality but with a larger denominator, it will

also fulfill the above inequality. We make the denominator of mi symmetric by summing

over all indices j ∈ {1, . . . , M}. We additionally choose C̃i = Ci, leading to

mi(y) =
p̂←i(y)

∑M
j=1 p̂←j(y)

. (B.90)

These mi fulfill Equation 6.20 (see the definition of p̂←i, Equation 6.35) and are valid, non-

negative resampling MIS weights.
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B.4.2 Generalizing Pairwise MIS Weights

In order to derive the generalized Pairwise MIS weights, we proceed as before until

Equation B.88,

mi(Yi) ≤
C̃i

Ci

p̂←i(Yi)

p̂(Yi)
, (B.91)

but then treat canonical samples i ∈ R and non-canonical indices i /∈ R differently. In-

stead of including all the indices in the denominator like before, we only increase the

denominator by the term corresponding to index i, with a positive multiplier αi. We set for

non-canonical samples

mi(y) =
C̃i

Ci

p̂←i(y)
p̂(y) + αi p̂←i(y)

for i /∈ R, (B.92)

and observe that this choice fulfills Equation B.91. We still need mi to sum to 1 over the

i that can generate y, in order to fulfill Equation 6.20, so we simply divide the remainder

uniformly to the canonical samples i ∈ R,

mi(y) =
1
|R|

(
1 − ∑

j/∈R
mj(y)

)
if i ∈ R. (B.93)

Different choices for C̃i and αi yield a family of potential MIS weights: denoting βi = C̃i/Ci,

we reach

mi(y) =
1
|R|

(
1 − ∑

j/∈R
β j

p̂←j(y)
p̂(y) + αj p̂←j(y)

)
(B.94)

=
1
|R|

(
1 − ∑

j/∈R

β j

αj
+ ∑

j/∈R

β j

αj

p̂(y)
p̂(y) + αj p̂←j(y)

)
if ∈ R

mi(y) = βi
p̂←i(y)

p̂(y) + αi p̂←i(y)
if i /∈ R. (B.95)

Restricting this family by requiring that the parameters do not depend on i, and denoting

αi = α and κ = ∑i/∈R βi/αi = (M − |R|)β/α, we reach the family

mi(y) =
1
|R|

(
1 − κ +

κ

M − |R| ∑
j/∈R

p̂(y)
p̂(y) + α p̂←j(y)

)
if i ∈ R (B.96)

mi(y) = α
κ

M − |R|
p̂←i(y)

p̂(y) + α p̂←i(y)
if i /∈ R. (B.97)

Since MIS weights must be non-negative and sum to one, we must have 0 ≤ mi ≤ 1

for all i and y. We must generally have κ ≤ 1 since otherwise mi(y) could be negative
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in Equation B.96. Since α > 0 and we must have mi(y) ≥ 0 in Equation B.97, we must

also have 0 ≤ κ. We have 0 ≤ κ ≤ 1, and we interpret the above MIS weights as linear

interpolation between uniformly choosing one of the canonical samples (κ = 0, mi =

1/ |R| for i ∈ R, mi = 0 for i /∈ R), and a fundamental MIS scheme (κ = 1) parametrized

by α:

mi(y) =
1
|R|

(
1

M − |R| ∑
j/∈R

p̂(y)
p̂(y) + α p̂←j(y)

)
if i ∈ R (B.98)

mi(y) = α
1

M − |R|
p̂←i(y)

p̂(y) + α p̂←i(y)
if i /∈ R. (B.99)

• The uniform case. To find a sensible value for α for the fundamental MIS scheme,

we consider the simple case when all Xi are i.i.d. with p̂i = p̂ for all i. In this case, we

have no reason to favor any of the samples and we should have m1 = · · · = mM = 1/M,

yielding

mi(y) =
1
|R|

(
1

M − |R| ∑
j/∈R

1
1 + α

)
=

1
M

if i ∈ R (B.100)

mi(y) = α
1

M − |R|
1

1 + α
=

1
M

if i /∈ R, (B.101)

from which we solve

α =
M
|R| − 1. (B.102)

In the fundamental case κ = 1, we substitute α = M/ |R| − 1 and reach

mi(y) =
1

M − |R| ∑
j/∈R

p̂(y)
|R| p̂(y) + (M − |R|) p̂←j(y)

if i ∈ R (B.103)

mi(y) =
p̂←i(y)

|R| p̂(y) + (M − |R|) p̂←i(y)
if i /∈ R, (B.104)

which we call uniform Pairwise MIS.

• The defensive case. If we instead treat the canonical samples as more reliable than

the other samples, we may interpolate the previous solution towards always choosing one

of the canonical samples by keeping α = M/ |R| − 1 and choosing 0 ≤ κ < 1. One such

a heuristic could be to ensure that the MIS weights of the canonical samples are always

at least as large as those of the other samples. With α = M/ |R| − 1, the canonical mi(y)

cannot be less than (1 − κ)/ |R| (set p̂j(y) −→ ∞ in Equation B.96), and the non-canonical
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mi cannot exceed κ/(M − |R|) (set p̂←i(y) −→ ∞ in Equation B.97). These bounds can be

made equal by choosing (1 − κ)/ |R| = κ/(M − |R|), i.e., κ = (M − |R|)/M, which gives

us the defensive generalized Pairwise MIS weights,

mi(y) =
1
M

+
1
M ∑

j/∈R

p̂(y)
|R| p̂(y) + (M − |R|) p̂←j(y)

if i ∈ R (B.105)

mi(y) =
M − |R|

M
p̂←i(y)

|R| p̂(y) + (M − |R|) p̂←i(y)
if i /∈ R. (B.106)

B.4.3 Resampling Weight Bounds

We next derive more accurate bounds for the resampling weights for our generalized

Talbot and Pairwise MIS weights. In all cases we achieve the same bound, Ci/ |R|, where

p̂i(Xi)Wi ≤ Ci.

• Generalized Talbot MIS. A direct substitution of the Generalized Talbot MIS weights

(Equation B.90) into the formula of wi (Equation B.84) yields, assuming that Yi exists

(otherwise wi = 0),

wi = mi(Yi) · p̂(Yi)Wi ·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.107)

=

(
p̂←i(Yi)

∑M
j=1 p̂←j(Yi)

)
· p̂(Yi)Wi ·

∣∣∣∣
∂Ti

∂Xi

∣∣∣∣ (B.108)

=

p̂i(Xi)

∣∣∣∣
∂T−1

i
∂Yi

∣∣∣∣
∑j∈R p̂←j(Yi) + ∑j/∈R p̂←j(Yi)

· p̂(Yi)Wi ·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.109)

=
p̂(Yi)

|R| p̂(Yi) + ∑j/∈R p̂←j(Yi)
· p̂i(Xi)Wi (B.110)

≤ 1
|R| · Ci =

Ci

|R| . (B.111)

• Generalized Pairwise MIS. We first cover the feasible parameter combinations α >

0 and 0 ≤ κ ≤ 1 in one go, assuming that p̂i(Xi)Wi ≤ Ci. For canonical samples i ∈ R, we

have p̂i = p̂ and Yi = Ti(Xi) = Xi, we substitute Equation B.96 and get the bound
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wi = mi(Yi) · p̂(Yi)Wi ·
∣∣∣∣

∂Yi

∂Xi

∣∣∣∣ (B.112)

=
1
|R|

(
1 − κ +

κ

M − |R| ∑
j/∈R

p̂(Yi)

p̂(Yi) + α p̂←j(Yi)

)
· p̂(Yi)Wi · 1 (B.113)

≤ 1
|R|

(
1 − κ +

κ

M − |R| ∑
j/∈R

p̂(Yi)

p̂(Yi)

)
· p̂(Yi)Wi (B.114)

≤ Ci

|R| . (B.115)

For non-canonical samples i /∈ R, assuming again p̂i(Xi)Wi ≤ Ci, substituting Equa-

tion B.97, we get the bound

wi = mi(Yi) · p̂(Yi)Wi ·
∣∣∣∣

∂Yi

∂Xi

∣∣∣∣ (B.116)

=

(
α

κ

M − |R|
p̂←i(Yi)

p̂(Yi) + α p̂←i(Yi)

)
· p̂(Yi)Wi ·

∣∣∣∣
∂Yi

∂Xi

∣∣∣∣ (B.117)

= α
κ

M − |R|
p̂i(Xi)

p̂(Yi) + α p̂←i(Yi)
· p̂(Yi)Wi (B.118)

≤ α
κ

M − |R|Ci. (B.119)

(B.120)

In the case that α ≤ M/ |R| − 1, we simplify

wi ≤ κ
Ci

|R| ≤
Ci

|R| . (B.121)

B.4.4 Tractable Marginal PDFs

Sometimes the PDFs of the input samples Xi are tractable functions pi. In that case, the

PDFs pi may be used in place of the p̂i in the MIS weight formulas, effectively replacing

p̂←i with the following “p from i”:

p←i(y) =

{
pi

(
T−1

i (y)
) ∣∣∣T−1

i
′
∣∣∣ (y), if y ∈ D(T−1

i )

0 otherwise
, (B.122)

resulting in the following expression for the generalized Talbot MIS:

mi(y) =
p←i(Yi)

∑M
j=1 p←j(Yi)

. (B.123)

The Pairwise MIS expression additionally contains terms p̂(y) whose normalization may

differ significantly from that of the PDFs pi. As such, we suggest replacing the terms
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p̂(y) in the MIS with a fixed canonical importance sampler c ∈ C that is reasonable for

integrating p̂ (p̂(y) ≤ Cc pc(y)). We show the uniform case as an example of this translation

to known PDFs:

mi(y) =
1

M − |R| ∑
j/∈R

pc(y)
|R| pc(y) + (M − |R|)p←j(y)

if i ∈ R (B.124)

mi(y) =
p̂←i(y)

|R| pc(y) + (M − |R|) p←i(y)
if i /∈ R. (B.125)

We then derive the resampling weight bounds for these updated formulas. Since the pi

are tractable, we assume unbiased contribution weights Wi = 1/pi(Xi). We also assume

that the canonical samples are reasonably importance sampled for p̂, i.e., p̂(x) ≤ Ci pi(x)

for all i ∈ R.

• Talbot MIS. Substituting Equation B.123 into Equation B.84, yields, remembering

that p←j(y) = pj(y) for canonical j,

wi = mi(Yi) · p̂(Yi)Wi ·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.126)

=

(
p←i(Yi)

∑M
j=1 p←j(Yi)

)
· p̂(Yi)

pi(Xi)
·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.127)

=
pi(Xi)

∑j∈R p←j(Yi) + ∑j/∈R p←j(Yi)
· p̂(Yi)

pi(Xi)
(B.128)

=
p̂(Yi)

∑j∈R pj(Yi) + ∑j/∈R p←j(Yi)
(B.129)

≤ p̂(Yi)

∑j∈R pj(Yi)
≤ p̂(Yi)

|R|minj∈R pj(Yi)
(B.130)

=
1
|R| max

j∈R

p̂(Yi)

pj(Yi)
≤ 1

|R| max
j∈R

Cj. (B.131)

• Pairwise MIS. We now derive bounds for the resampling weights in the case of

Generalized Pairwise MIS weights with 0 ≤ α ≤ M/ |R| − 1 and 0 ≤ κ ≤ 1, using pi

instead of p̂i.

If i is a canonical index, we use Equation B.96 with p̂←j replaced with p←j and p̂

replaced with pc. Noting that for canonical indices Yi = Ti(Xi) = Xi, we reach
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wi = mi(Yi) · p̂(Yi)Wi ·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.132)

=
1
|R|

(
1 − κ +

κ

M − |R| ∑
j/∈R

pc(Yi)

pc(Yi) + αp←j(Yi)

)
· p̂(Yi)

pi(Xi)
· 1 (B.133)

≤ 1
|R|

(
1 − κ +

κ

M − |R| ∑
j/∈R

1

)
· p̂(Xi)

pi(Xi)
(B.134)

=
1
|R| ·

p̂(Xi)

pi(Xi)
≤ Ci

|R| . (B.135)

Similarly, for non-canonical i we use Equation B.97 with the same substitutions and reach

wi = mi(Yi) · p̂(Yi)Wi ·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.136)

=

(
α

κ

M − |R|
p←i(Yi)

pc(Yi) + αp←i(Yi)

)
· p̂(Yi)

pi(Xi)
·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.137)

=


α

κ

M − |R|

pi(Xi)

∣∣∣∣
∂T−1

i
∂Yi

∣∣∣∣
pc(Yi) + αp←i(Yi)


 · p̂(Yi)

pi(Xi)
·
∣∣∣∣

∂Ti

∂Xi

∣∣∣∣ (B.138)

= α
κ

M − |R|
p̂(Yi)

pc(Yi) + αp←i(Yi)
≤ α

κ

M − |R|
p̂(Yi)

pc(Yi)
(B.139)

≤ α
κ

M − |R|Cc ≤
(

M
|R| − 1

)
1

M − |R|Cc =
Cc

|R| . (B.140)

We can combine the above results into a single, slightly looser bound that works for

any i and both MIS weight families (Talbot and Pairwise) when used with tractable PDFs:

wi ≤
1
|R| max

j∈R
Cj. (B.141)

B.5 Correctness Notes
This section discusses some aspects of ReSTIR that may affect performance and correct-

ness.

• On Visibility. Relating to the discussion in Section 6.5.1, ReSTIR DI [7] used a target

p̂i without the visibility term V(x1 ↔ x2). Our ReSTIR PT always considers visibility

between vertices. In fact, neglecting visibility makes maintaining convergence guarantees

tricky, as it creates paths with positive p̂i that never get sampled as Xi due to occlusion.

This implies supp p̂i �⊂supp Xi, making Xi non-canonical.

Without extra guarantees, Y resampled from Xi no longer covers supp p̂i, breaking the

supp p̂ ⊂ supp YM assumption of Equation 6.23 and preventing convergence of pY to p̄.
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ReSTIR DI circumvents this by closely tracking reuse throughout each algorithmic

phase. While its p̂i for temporal reuse checks for visibility, its spatial reuse uses an un-

occluded target p̂−V
i to reduce cost. Without full coverage of p̂−V

i ’s domain, intermediate

distributions never converge. The design still ensures coverage of fi’s domain, allowing

final estimators to remain unbiased. For direct lighting, earlier convergence to p̂i may only

be of theoretic interest, with the choices by Bitterli et al. [7] working around a bottleneck

from visibility costs. In path tracing, ignoring visibility requires much more engineering,

as typical path samplers never select occluded paths with V(xi ↔ xi+1) = 0.

• Temporal Reuse. Temporal sample reuse is unbiased with proper MIS weights,

e.g., our generalized Talbot or pairwise MIS, but a temporal shift mapping is needed, as

evaluating MIS weights for GRIS requires bijectively shifting paths between the prior and

current frames. In some cases, e.g., conflicting motion vectors, careful map definitions may

be needed to retain bijectivity.

This constraint means fully unbiased temporal reuse must evaluate paths in both the

current and prior frames, which is tricky in dynamic environments. Biased approxima-

tions to temporal MIS can be used, e.g., neglecting visibility [7, 10], which gives desirable

performance improvements for often imperceptible bias. Lin et al. [157] explicitly account

for temporal changes, reporting it reduces response time to dynamic lighting.

B.6 Primary Sample Space
Performing integration in a Monte Carlo setting typically starts from primary sample

sequences, i.e., streams of random numbers Ū = (U1, U2, . . .), where Ui ∈ [0, 1) are

uniformly distributed. Each Ū is used to estimate a contribution F(Ū), and the Monte

Carlo integration result is

I = E [F(Ū)] =
∫

U
F(ū)dū. (B.142)

A unidirectional path tracer builds a sequence of paths of different lengths from the

random sequences Ū. Often, the path tracer produces, for each length d, N paths Xd,n ∈ Ωd

by different strategies. Here, Ωd is the space of all paths of length d. N is often 2, and

the paths Xd,n with different n correspond to a next-event-estimation path connected to

a random light, and path continued to a direction importance sampled according to the

BSDF. The paths Xd,n are functions of Ū, i.e., Xd,n = xd,n(Ū).
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The total path contribution is the sum of the integrals of the fixed-length path contri-

butions,

I =
∞

∑
d=1

∫

Ωd

f (x)dx. (B.143)

We factor in the MIS weights ωd,n of the n sampling strategies and reach

I =
∞

∑
d=1

∫

Ωd

[
N

∑
n=1

ωd,n(x)

]
f (x)dx (B.144)

=
∞

∑
d=1

N

∑
n=1

∫

Ωd

ωd,n(x) f (x)dx. (B.145)

We assume for each term a proper importance sampler that produces paths Xd,n ∈ Ωd with

density pd,n. We assume that ωd,n(x) = 0 whenever pd,n(x) = 0 to retain the partition of

unity. This yields us

I =
∞

∑
d=1

N

∑
n=1

E

[
ωd,n(Xd,n)

f (Xd,n)

pd,n(Xd,n)

]
. (B.146)

Since the Xd,n are generated from the random variables Ū by Xd,n = xd,n(Ū), we may write

I =
∞

∑
d=1

N

∑
n=1

E

[
ωd,n (xd,n(Ū))

f (xd,n(Ū))

pd,n (xd,n(Ū))

]
. (B.147)

The fact that many Ū may lead to the same path Xd,n does not complicate this fact. We then

write the expectations as integrals and reach

I =
∞

∑
d=1

N

∑
n=1

∫

U
ωd,n (xd,n(ū))

f (xd,n(ū))
pd,n (xd,n(ū))

dū (B.148)

=
∫

U

∞

∑
d=1

N

∑
n=1

ωd,n (xd,n(ū))
f (xd,n(ū))

pd,n (xd,n(ū))
dū. (B.149)

This yields us the F for Equation B.142,

F(ū) =
∞

∑
d=1

N

∑
n=1

ωd,n (xd,n(ū))
f (xd,n(ū))

pd,n (xd,n(ū))
. (B.150)

B.7 Parameter Exploration
In this section, we analyze the effect of parameters such as neighbor count, reuse

window size and the number of spatial reuse passes for ReSTIR PT for offline rendering,

justifying our choice of default parameters. We perform the experiments leading to our

conclusions in two scenes, the simple Cornell Box and the more complex Kitchen scene.
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We first demonstrate how sampling cost can be amortized by increasing the number

of pixels we reuse from and the number of candidate path samples per pixel into optimal

numbers. For the first experiment, we densely reuse paths from each pixel in a square

around the current pixel, and after analyzing this case, we generalize the results to ran-

domly sampled sparse neighbors from a larger neighborhood.

B.7.1 Parameters for Dense Block of Pixels

Path reuse without GRIS (e.g., the path reuse algorithm by Bekaert et al. [11]) can

already achieve higher sampling efficiency than pure path tracing because resampling is

cheaper than generating samples from scratch. By defining unbiased contribution weights,

our GRIS supports more aggressive amortization of the sampling cost–with a reservoir, we

can increase the number of input samples for the initial RIS to further amortize the sample

generation cost. For S candidate samples, we approximately “gain” S samples when

reusing one sample. To analyze the sampling efficiency, we form a simplified model that

measures the ratio between the number of rays gained and the number of rays computed.

Assuming a simplified ideal case where all pixels generate paths with a fixed length L

and reusing a neighbor effectively gains all samples it generates, we write the following

equation for reusing K pixels (including self),

# rays gained
# rays computed

=
KSL

SL + η(K − 1)
, (B.151)

where η is the ray cost we pay for resampling (usually η < L).

If S = 1, the equation evaluates to KL/(L + η(K − 1)). Even when K → ∞, the

efficiency is still bounded by L/η. If we have S → ∞, the efficiency is bounded by K, which

means that the efficiency improvement becomes theoretically unlimited in this simplified

ideal case. In practice, we can measure sampling efficiency by comparing the variance at

equal render time.

This suggests that we should use a relatively large S and a relatively large K to achieve

higher sampling efficiency. In practice, we observe in Figure B.1 that increasing S and K

eventually becomes harmful: increasing the neighbor count K increases MSE instead of re-

ducing it when the neighborhood becomes large enough, and a larger S leads to problems

even sooner. This is because enlarging the neighborhood size adds samples that are farther

away, and path space similarity generally decreases by distance. This eventually offsets
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(a) Cornell Box (b) Kitchen
Figure B.1: A parameter exploration of the number of initial samples per pixel (S, colored
lines) and the number of neighbors used for resampling (X-axis). Each pixel generates S
candidate samples and uses RIS to select one. Then GRIS resamples for each pixel a path
from one from the neighboring 3x3, 5x5, 7x7, etc. pixels. Pairwise MIS is used.

the benefit from more samples. Enlarging S (the candidate count for initial resampling)

can also eventually lead to diminishing returns, as we show in Figure B.2. In both scenes,

we see that using a combination of S = 32 and K = 49 (i.e., a 7 × 7 neighborhood) results

in near-optimal sampling efficiency.

B.7.2 Parameters for Sparse Neighbors

The cost of using a large number of input samples for GRIS can be amortized also

by chaining multiple spatial reuse passes. A caveat is that chaining spatial reuse passes

(a) Cornell Box (b) Kitchen
Figure B.2: Sampling efficiency. This experiment repeats the setting of Figure B.1, but
outputs the MSE after ten seconds of rendering, revealing the most efficient parameters
for multisample rendering.
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with a small, fixed neighborhood can lead to excessive correlation between the samples,

which can lead to reduced sampling efficiency. This motivates using sparse neighbors

randomized from a larger neighborhood to minimize correlation.

From our parameter exploration, we found that near-optimal sampling efficiency for

random reuse can be achieved with S = 32 (similar to the dense reuse case), 2-3 rounds

of spatial reuse with 6-10 random neighbors in 5-10 pixel radius (a diameter of 10-20

pixels). After comparing visual quality in this parameter range for both scenes, we select

a parameter set of 10 pixel radius, 3 rounds of spatial reuse, and 6 random neighbors.

We see a slight variance reduction in equal render time compared to dense reuse with its

near-optimal parameters. The improvement of sampling efficiency is small, because sparse

reuse requires a larger neighborhood to reduce correlation, which also lowers the similarity

between the pixels. This partially cancels the benefits from amortizing the sampling cost.

The visual improvement is, however, much larger (Figure B.3), since random reuse reduces

visual correlation between nearby pixels. We find the 10-pixel radius can still be enlarged

for real-time rendering, as chaining many reuse passes over multiple frames builds up

more correlation. For real-time rendering, we use a radius of 20 pixels, only one initial

candidate sample per pixel, and one spatial reuse pass between the current pixel and three

random others, to keep the rendering time low.

(a) Dense Reuse
MSE: 2.45e-7
MAPE: 0.0571

(b) Random Reuse
MSE: 2.37e-7
MAPE: 0.0502

(c) Reference

Figure B.3: A comparison of 60-second equal-time rendering of the Kitchen scene. Dense
reuse and random reuse have similar MSE/MAPE with their respective optimal parame-
ters, but random reuse produces results visually closer to the reference.
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