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Fig. 1. We combine bidirectional path tracing with a novel reuse scheme to enable ReSTIR [Wyman et al. 2023] to better find hard-to-reach light sources and
even resolve caustics interactively. Only emissive filaments inside the glass blubs light this Bathroom scene. At a 1920×1080 resolution, our method achieves a
mean absolute percentage error (MAPE) of 0.312 in 70ms (with 1M light subpaths), while ReSTIR PT [Lin et al. 2022] achieves a MAPE of 1.368 in 71ms.

Recent spatiotemporal resampling algorithms (ReSTIR) accelerate real-time

path tracing by reusing samples between pixels and frames. However, exist-

ing methods are limited by the sampling quality of path tracing, making them

inefficient for scenes with caustics and hard-to-reach lights. We develop a

ReSTIR variant incorporating bidirectional path tracing that significantly

improves the sampling quality in these scenes.
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Combining bidirectional path tracing and ReSTIR introduces multiple

challenges: the generalized resampled importance sampling (GRIS) behind

ReSTIR is, by default, not aware of how a path was sampled, which com-

plicates reuse of bidirectional paths. Light tracing is also challenging since

light subpaths can contribute to all pixels. To address these challenges, we

apply GRIS in a sampling technique-aware extended path space, design a

bidirectional hybrid shift mapping, and introduce caustics reservoirs that

can accumulate caustics across frames. Our method takes around 50ms per

frame across our test scenes, and achieves significantly lower error compared

to prior unidirectional ReSTIR variants running in equal time.
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1 INTRODUCTION
ReSTIR PT [Lin et al. 2022] improves real-time rendering quality by

orders of magnitude by reusing path samples between pixels and

frames. However, ReSTIR PT inherits weaknesses from unidirec-

tional path tracing for scenes with caustics or hard-to-reach lights

(Figure 1). Our work aims to significantly improve ReSTIR PT in

these scenes by incorporating bidirectional path tracing (BDPT).

Naïvely applying generalized resampled importance sampling

(GRIS), the main engine behind ReSTIR PT, to real-time bidirectional

path tracing is not feasible. When reusing across pixels or frames,

GRIS does not directly account for which technique generates a path

sample; and in BDPT, many sampling techniques can form each path.

This makes parameterizing a path with one random seed infeasible,

calling for expensive path storage. Additionally, light tracing poses

additional challenges for screen-space reuse as it produces samples

contributing to all pixels.

To address these challenges, we apply GRIS theory in an ex-

tended path space consisting of path–technique pairs (𝑥, 𝜏) joined
by technique-specific multiple importance sampling (MIS) weights.

These extended paths allow principled reasoning about the sampling

technique at path reuse without introducing bias. Our method en-

ables a seemingly infeasible choice, using Lin et al.’s [2022] hybrid

shift for camera sub-paths and random replay for light sub-paths.

We achieve interactive caustic rendering by implementing a bidi-

rectional hybrid shift, as well as storing an additional caustic reser-
voir in each pixel. The caustic reservoir enables unbiased temporal

accumulation of caustics over multiple frames in dynamic scenes.

Scene changes may move caustics between pixels, but they often

remain nearly converged. Accumulation is supported by merging

new caustic paths into caustic reservoirs each frame. Our caustic

reservoirs automatically aggregate and stratify the caustics into

the pixels, allowing interactive updates and retaining high caustic

quality as the scene evolves.

We further accelerate our ReSTIR BDPT by deriving a novel

variant of recursive MIS weights [van Antwerpen 2011] for fast MIS

weight evaluation with shift mappings. We also propose two faster

alternatives, a biased variant which copies the unshifted MIS weight

for cases where full unbiasedness is not required, and an unbiased

lightweight variant which omits vertex connection techniques.

Our method runs interactively, taking around 50ms per frame in

most of our test scenes (Figure 11). On difficult scenes at one sample

per pixel, we achieve much lower error compared to ReSTIR PT in

equal time due to the improved efficiency of bidirectional sampling.

2 BACKGROUND
We briefly review resampled importance sampling [Talbot et al.

2005], its generalization [Lin et al. 2022], and bidirectional path trac-

ing [Veach and Guibas 1995a]. We refer readers to Wyman et al.’s

[2023] course notes for a more comprehensive ReSTIR review [Bit-

terli et al. 2020; Lin et al. 2022], and physically-based rendering

textbooks [Pharr et al. 2016] and Veach’s thesis [1997] for an intro-

duction to path space and bidirectional path tracing.

Our notation and key symbols are summarized in Table 1.

Table 1. Summary of notation.

𝑥 Full path

𝑦 Light subpath (with 𝑠 vertices)

𝑧 Camera subpath (with 𝑡 vertices)

𝑋 Random variable for a path

𝑌 Random variable for a light subpath

𝑍 Random variable for a camera subpath

𝑥𝑟 Reconnection vertex

𝑥1 Primary hit

𝑥2 Secondary hit

𝑝𝐿 Light subpath selection probability

𝑝 Canonical probability density function

−→
𝑝 𝜎
𝑖

“Forward” solid-angle PDF of sampling 𝑥𝑖 from 𝑥𝑖−1←−
𝑝 𝜎
𝑖

“Reverse” solid-angle PDF of sampling 𝑥𝑖 from 𝑥𝑖+1−→
𝑝 𝑖

−→
𝑝 𝜎
𝑖
expressed in area measure

←−
𝑝 𝑖

←−
𝑝 𝜎
𝑖
expressed in area measure

𝑝, 𝑝𝜏 RIS target functions

𝜔𝜏 , 𝜔𝑠,𝑡 BDPT MIS weight for technique 𝜏 or (𝑠, 𝑡)
𝑀 Resampling candidate count

𝑚𝑖 Resampling MIS weight for candidate 𝑖

𝑐𝑖 Confidence weight for reservoir 𝑖

2.1 Path integrals and notations
In rendering, a pixel’s intensity 𝐼 is computed as an integral over all

light paths connecting it to light sources [Kajiya 1986; Veach 1997],

𝐼 =

∫
Ω
𝑓 (𝑥) d𝜇 (𝑥), (1)

for a light path 𝑥 = (𝑥0, 𝑥1, · · · , 𝑥𝑘 ) with 𝑘 + 1 vertices, where 𝑥0 is

on the camera sensor and 𝑥𝑘 is on a light. Ω =
⋃∞

𝑘=1
M𝑘+1

is the

path space with the union of scene surfacesM, and 𝜇 is the area

product measure. The measurement contribution function 𝑓 turns

radiance transported along a path into pixel response:

𝑓 (𝑥) =𝑊e (𝑥1 → 𝑥0) ·𝐺 (𝑥0 ↔ 𝑥1) · 𝐿e (𝑥𝑘 → 𝑥𝑘−1
)·(

𝑘−1∏
𝑖=1

𝜌 (𝑥𝑖+1 → 𝑥𝑖 → 𝑥𝑖−1) ·𝐺 (𝑥𝑖 ↔ 𝑥𝑖+1)
)
,

(2)

where𝑊e is sensor importance of the pixel, 𝐿e is light emission,𝐺 is

the geometry term, and 𝜌 is the bidirectional scattering distribution

function (BSDF).

In standard unidirectional path tracing (PT) [Kajiya 1986], the

pixel intensity (Equation 1) is given by the Monte Carlo estimator

⟨𝐼 ⟩PT =
𝑓 (𝑋 )
𝑝 (𝑋 ) , (3)

where 𝑝 is the probability density function (PDF) for random path

𝑋 . The estimation noise is smaller when 𝑝 better matches 𝑓 .

2.2 Bidirectional path tracing
Bidirectional path tracing (BDPT) [Lafortune and Willems 1993;

Veach andGuibas 1995a] improves sampling efficiency over unidirec-

tional path tracing in complex scenes. It samples two subpaths: one

traced from the camera and one from the light. We denote camera
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𝑦𝑠−1 𝑦1

𝑦 = {𝑦𝑠−1, 𝑦𝑠−2, · · · , 𝑦0}
𝑧 = {𝑧0, · · · , 𝑧𝑡−2, 𝑧𝑡−1}

𝑧𝑡−1

𝑧𝑡−2

𝑧1

𝑧0

𝑦𝑠−2

𝑦0

𝑥 = 𝑧𝑦 = {𝑧0, · · · , 𝑧𝑡−1, 𝑦𝑠−1, · · · , 𝑦0}

Fig. 2. A path formed by bidirectional path tracing. 𝑧 is the camera subpath,
𝑦 is the light subpath, and the full path is formed by appending them
together: 𝑥 = 𝑧𝑦

subpaths with 𝑡 vertices as 𝑧𝑡 = (𝑧0, 𝑧1, · · · , 𝑧𝑡−1) for 𝑧0 on the cam-

era, and light subpaths with 𝑠 vertices as 𝑦𝑠 = (𝑦𝑠−1, 𝑦𝑠−2, · · · , 𝑦0)
for 𝑦0 on the light (see Figure 2).

By connecting camera and light subpaths at different vertices,

we form full paths 𝑥𝑠,𝑡 = 𝑧𝑡𝑦𝑠 with 𝑡 + 𝑠 vertices. Case 𝑡 = 1 gives

light tracing, with an explicit connection to the camera (𝑧0) from

the light subpath’s end (𝑦𝑠−1). Case 𝑡 = 0 corresponds to 𝑦𝑠−1

randomly selecting the sensor surface via BSDF sampling. In our

implementation, we omit 𝑡 = 0 paths, as they have zero probability

for pinhole cameras and otherwise contribute very little to the final

image [Veach and Guibas 1995a].

Bidirectional sampling can produce the same path by many sam-

pling techniques (𝑠, 𝑡), by connecting subpaths of different lengths.

This can over-count the same path. To form an unbiased estimator,

Veach and Guibas [1995b] combine these sampling techniques using

multiple importance sampling (MIS):

⟨𝐼 ⟩BDPT =
∑︁

𝑡>0,𝑠≥0

𝜔𝑠,𝑡 (𝑋𝑠,𝑡 )
𝑓 (𝑋𝑠,𝑡 )

𝑝𝑠,𝑡 (𝑋𝑠,𝑡 )
, (4)

where 𝑝𝑠,𝑡 (𝑋 ) is the probability density of sampling path 𝑋 with

technique (𝑠, 𝑡), and MIS weights 𝜔𝑠,𝑡 form a partition of unity over

the probability densities of all ways to form the same path:

𝑝𝑠,𝑡 (𝑋 ) =
𝑡−1∏
𝑖=1

−→
𝑝𝑖

𝑠+𝑡−1∏
𝑖=𝑡

←−
𝑝𝑖 (5)

𝜔𝑠,𝑡 (𝑋 ) =
(
𝑝𝑠,𝑡 (𝑋 )

)𝛽∑
𝑡 ′+𝑠′=𝑡+𝑠

(
𝑝𝑠′,𝑡 ′ (𝑋 )

)𝛽 . (6)

Here, 𝛽 is the power used byMIS (e.g., 𝛽 = 1 for the balance heuristic,

𝛽 > 1 for the power heuristic). Forward PDFs
−→
𝑝𝑖 are area-measure

probability densities for sampling vertex 𝑥𝑖 from vertex 𝑥𝑖−1 during

camera tracing. Similarly, reverse PDFs←−𝑝𝑖 represent densities for
sampling vertex 𝑥𝑖 from vertex 𝑥𝑖+1 during light tracing. This fol-
lows notation in van Antwerpen [2011] and Georgiev et al. [2012].

Notably absent in Equation 5 are the densities
−→
𝑝𝑡 and

←−−−
𝑝𝑡−1 along

the subpath connection; this connection is made deterministically.

By combining techniques with MIS, bidirectional path tracing

excels at rendering intricate light paths, e.g., difficult-to-reach lights

or complex caustics; different techniques are efficient in different

situations, but due to MIS, BDPT is typically efficient as long as at

least one of the techniques is efficient
1
.

Recursive MIS calculations. Classical BDPT stores forward and

reverse densities per vertex [Veach 1997] and loops over all tech-

niques for a path to compute 𝜔𝑠,𝑡 . This uses storage proportional

to path length and reduces compute efficiency on the GPU. By ob-

serving that subpath probabilities of sequential vertices share much

of the product prefix (

∏−→
𝑝𝑠 in Equation 5), van Antwerpen [2011]

formulated an efficient recursive relation to incrementally compute

and store data at path vertices so computing 𝜔𝑠,𝑡 only needs data

from the two connection vertices. This allows discarding other path

vertices after tracing, enabling GPU-efficient algorithms without

per-vertex path storage [Davidovič et al. 2014; van Antwerpen 2011].

Light Vertex Cache (LVC). Classical BDPT generates samples for a

pixel by creating a pair of camera and light subpaths and evaluating

all possible connections along each subpath. Many later variants

[Davidovič et al. 2014; Nabata et al. 2020; Pajot et al. 2011; Popov

et al. 2015] explore different ways to combine subpaths for more

efficient sampling. The Light Vertex Cache (LVC) algorithm [Davi-

dovič et al. 2014] first generates 𝑁𝐿 light subpaths shared over all

pixels, and lets per-pixel camera subpaths connect to random light

subpaths. Instead of storing light subpaths, it stores connectable

light subpath vertices in an array called the light vertex cache. Dur-
ing camera tracing, camera subpaths connect to random vertices

in the LVC. After connecting, efficient computation of BDPT MIS

weights is enabled by van Antwerpen’s [2011] recursive MIS for-

mulation. This transforms BDPT into a GPU-friendly streaming

algorithm where camera subpaths connect to a stream of random

light subpath vertices, instead of a single light subpath.

2.3 Resampled Importance Sampling (RIS)
Estimating the integral in Equation 1 is often done using Monte

Carlo integration: ⟨𝐼 ⟩MC =
𝑓 (𝑋 )
𝑝 (𝑋 ) , where 𝑝 (𝑋 ) is the probability den-

sity of sampling path 𝑋 . Without loss of generality, we assume one

sample per pixel. Ideally, we want a probability density proportional

to the integrand 𝑓 , but directly sampling with such a distribution

is often intractable. Resampled importance sampling (RIS) [Talbot

et al. 2005] approximates this by first sampling 𝑀 i.i.d. candidate

samples𝑋1, 𝑋2, . . . , 𝑋𝑀 from an easier-to-sample distribution 𝑝 , and

chooses one of them as the output 𝑌𝑧 proportionally to resampling
weights 𝑤𝑖 . Following Lin et al. [2022], we have

𝑤𝑖 =
1

𝑀

𝑝 (𝑋𝑖 )
𝑝 (𝑋𝑖 )

, (7)

where the target function 𝑝 is proportional to the often intractable

target density.

The resampling process makes the output 𝑌𝑧 ’s probability density

𝑝𝑌𝑧 computationally intractable, rendering the classical Monte Carlo

estimator 𝑓 /𝑝 inadequate. Instead, we can compute an unbiased

1
Full BDPT can be less efficient than a subset of techniques due to the extra cost from

evaluating all techniques, or from sub-optimal MIS weights [Grittmann et al. 2019].
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contribution weight (UCW) [Lin et al. 2022]𝑊𝑌𝑧 for 𝑌𝑧 ,

𝑊𝑌𝑧 =
1

𝑝 (𝑌𝑧)

𝑀∑︁
𝑖=1

𝑤𝑖 , (8)

which is an unbiased estimate for the unknown reciprocal probabil-

ity density 1/𝑝𝑌𝑧 (𝑌𝑧). The classical Monte Carlo estimator ⟨𝐼 ⟩MC is

replaced with

⟨𝐼 ⟩RIS = 𝑓 (𝑌𝑧)𝑊𝑌𝑍 . (9)

As candidate count𝑀 increases, the (intractable) output probability

density approaches the target PDF 𝑝 = 𝑝/
∫
𝑝 , and𝑊𝑌𝑧 approaches

1/𝑝 (𝑌𝑧). Ideally, 𝑝 would be 𝑓 itself for asymptotically perfect im-

portance sampling.

RIS allows candidates 𝑋𝑖 with different source distributions 𝑝𝑖
using multiple importance sampling [Lin et al. 2022; Talbot et al.

2005]. We simply replace the 1/𝑀 in Equation 7 with resampling
MIS weights𝑚𝑖 :

𝑤𝑖 =𝑚𝑖 (𝑋𝑖 )
𝑝 (𝑋𝑖 )
𝑝𝑖 (𝑋𝑖 )

, (10)

where, e.g.,

𝑚𝑖 (𝑥) =
𝑝𝑖 (𝑥)∑𝑀
𝑗=1

𝑝 𝑗 (𝑥)
(11)

for the balance heuristic. If all𝑋𝑖 are identically distributed (meaning

all 𝑝𝑖 are identical), then the weights𝑚𝑖 reduce to the same 1/𝑀 .

Equations 8 and 9 remain unchanged.

2.4 Spatiotemporal reuse and ReSTIR
The idea of ReSTIR [Bitterli et al. 2020] is to recursively apply RIS

to reuse samples from each pixel’s spatiotemporal neighbors. Lin

et al. [2022] formalized this in their generalized RIS (GRIS), defining

the unbiased contribution weights and allowing them in resampling

weights in place of the unknown reciprocal PDFs:

𝑤𝑖 =𝑚𝑖 (𝑋𝑖 )𝑝 (𝑋𝑖 )𝑊𝑋𝑖
. (12)

Since the PDFs 𝑝𝑖 are not known, the resampling MIS weights

𝑚𝑖 must be modified. A simple choice is the generalized balance
heuristic, using input 𝑋𝑖 ’s target function 𝑝𝑖 as a proxy for 𝑝𝑖 :

𝑚𝑖 (𝑋𝑖 ) =
𝑝𝑖 (𝑋𝑖 )∑𝑀
𝑗=1

𝑝 𝑗 (𝑋𝑖 )
. (13)

To deal with the fact that the candidates from a pixel’s spatiotem-

poral neighbors are from different domains, Lin et al. [2022] transfer

paths between domains with shift mappings 𝑇𝑖 from the gradient-

domain rendering literature [Kettunen et al. 2015; Lehtinen et al.

2013]. A shift mapping𝑇𝑖 takes a path 𝑥 from domain Ω𝑖 and slightly

modifies it into a similar path𝑇𝑖 (𝑥) in Ω. Not every path needs to be

shiftable; a shift mapping bijectively maps paths from a subset of Ω𝑖

into a subset of Ω. A shift may be undefined, e.g., due to occlusion

or a failure to ensure bijectivity (e.g., due to total internal reflection).

See Wyman et al. [2023] for details.

Reusing paths with shift mappings further modifies the resam-

pling weights, but other formulas remain the same. The inputs 𝑋𝑖
are mapped from the source domains into the current pixel’s do-

main as 𝑇𝑖 (𝑋𝑖 ), and a Jacobian determinant is added to transform

the contribution weights to the current domain, giving

𝑤𝑖 =𝑚𝑖 (𝑇𝑖 (𝑋𝑖 )) 𝑝 (𝑇𝑖 (𝑋𝑖 ))𝑊𝑋𝑖

���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� . (14)

The MIS weight 𝑚𝑖 and target function 𝑝 must be evaluated in

the current domain, i.e., at 𝑇𝑖 (𝑋𝑖 ) instead of 𝑋𝑖 . Multiplying the

UCW𝑊𝑋𝑖
by the Jacobian determinant technically transforms it

into𝑊𝑇𝑖 (𝑋𝑖 ) for the shifted path. The output 𝑌𝑧 is then resampled

from the {𝑇𝑖 (𝑋𝑖 )}𝑖 proportionally to the𝑤𝑖 , and Equations 8 and 9

remain unchanged.

The resampling MIS weights𝑚𝑖 require another change. Mapping

a random variable 𝑋𝑖 with a shift map 𝑇𝑖 modifies its probability

density. Lin et al. [2022] account for this in the resampling MIS

weights by defining a function 𝑝←𝑖 , “𝑝 from 𝑖” that shifts path 𝑥

back to domain 𝑖 for target function evaluation and accounts for

density changes using the Jacobian determinant,

𝑝←𝑖 (𝑥) =

𝑝𝑖

(
𝑇 −1

𝑖
(𝑥)

) ���� 𝜕𝑇 −1

𝑖

𝜕𝑥

���� 𝑥 ∈ 𝑇𝑖 (supp𝑋𝑖 )

0 otherwise

. (15)

Condition 𝑥 ∈ 𝑇𝑖 (supp𝑋𝑖 ) amounts to 𝑇 −1

𝑖
being defined

2
. This

gives the generalized balance heuristic

𝑚𝑖 (𝑥) =
𝑝←𝑖 (𝑥)∑𝑀
𝑗=1

𝑝←𝑗 (𝑥)
. (16)

In practice, the terms are scaled by confidence weights 𝑐𝑖 , which

effectively weight each domain based on the number of samples

each domain has processed, yielding

𝑚𝑖 (𝑥) =
𝑐𝑖 𝑝←𝑖 (𝑥)∑𝑀
𝑗=1

𝑐 𝑗 𝑝←𝑗 (𝑥)
. (17)

Kettunen et al. [2023, supplemental] connect Equation 17 to Veach

and Guibas [1995b]’s multi-sample MIS, if𝑀𝑖 is interpreted as 𝑋𝑖 ’s

effective sample count, i.e., how many simple samples it represents.

For instance, if ReSTIR has improved a prior frame’s sample to

correspond to 𝑐𝑖 current-frame samples, sensible temporal reuse

would weight the prior sample by 𝑐𝑖 and the current sample by

1. Effective sample counts are hard to compute, so actual sample

counts with a fixed confidence cap are often used instead.

A more computationally efficient but less robust alternative to

the generalized balance heuristic is the pairwise MIS weight [Bit-

terli et al. 2020]. We refer readers to the recent ReSTIR course for

complete formulas [Wyman et al. 2023].

ReSTIR PT’s [Lin et al. 2022] shift mapping, the hybrid shift,
reuses paths by first tracing a new primary ray from the target pixel,

and then combining two operations:

• Random replay: continue tracing the shifted path by copy-

ing the random numbers used in the original path,

• Reconnection: connect back to the next path vertex of the

original path.

The hybrid shift applies reconnection if the current vertex on the

shifted path and the next vertex on the original path are both con-
nectable, i.e., follow a simple vertex roughness and distance based

2
The condition also requires that the PDF of 𝑋𝑖 is positive at 𝑇 −1

𝑖 (𝑥 ) , but this is
normally guaranteed by 𝑝𝑖 (𝑇 −1

𝑖 (𝑥 ) ) > 0.
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heuristic that guarantees the reconnection is valid (not e.g., on a

mirror); random replay postpones reconnection until a connectable

vertex is found. Once joined by reconnection, spatial reuse reuses

the rest of the path, while temporal reuse requires re-tracing in the

new scene: the reconnection vertex is moved with the geometry to

follow possible animation, and the later vertices are re-traced with

random replay to avoid excess vertex storage on the GPU.

To summarize, ReSTIR is the combination of initial sampling,

temporal reuse with GRIS, and spatial reuse between pixels with

GRIS. GRIS aggregates multiple samples into one by appropriately

weighting each input (e.g., Equation 14) and choosing which one

to output proportionally to these resampling weights. The output

aggregates many samples over pixels and frames, and is assigned an

unbiased contribution weight by Equation 8. The UCWmay be used,

for example, to recursively resample or integrate with Equation 9. By

combining samples spatiotemporally, ReSTIR improves the sample

distribution, greatly reducing noise even with just a single sample

per pixel per frame.

2.5 Resampling for BDPT
RIS has previously been used to improve subpath connections within

BDPT. Two-stage Resampling Nabata et al. [2020] and SPCBPT Su

et al. [2022] apply RIS to sample important light subpaths for subpath

connections (techniques with both 𝑠 >1 and 𝑡 >1). More recently, Liu

and Gan [2023] use grid-based reservoirs to resample light subpaths

over time. These methods only use RIS to select light subpaths

for bidirectional connections. Since they do not modify subpaths

(e.g., with reconnection), they are not applicable to light tracing

techniques (𝑡 ≤ 1), which are often most efficient for sampling

effects such as caustics. They also operate in world space, requiring

more storage for large or highly detailed scenes.

The term caustic reservoir also appears in the concurrent ReSTIR

FG [Kern et al. 2024], which applies resampling to vertex merging.

ReSTIR FG separates caustic light paths during resampling to reduce

caustic blurring from vertex merging. We also separate caustic light

paths, however this is to prevent caustic samples from degrading

spatial resampling quality, since they cannot be spatially shifted to

other pixels. Our caustic reservoirs are an unbiased estimate of the

contribution from caustic light paths, while ReSTIR FG is biased

due to the use of vertex merging.

3 OVERVIEW
We aim to produce paths with bidirectional path tracing and ap-

ply GRIS to reuse these paths spatiotemporally. Bidirectional path

tracing often produces a much better sample distribution, enabling

rendering of intricate light paths such as caustics, and improving

the sampling quality at low sample counts.

Lin et al. [2022] apply GRIS to unidirectional path tracing, which

corresponds to techniques 𝑠 = 0 (camera subpath hits an emissive

surface) and 𝑠 = 1 (next event estimation). A main challenge in

applying GRIS to bidirectional path tracing is handling the large set

of sampling techniques. In particular, we oftenwant to apply random

replay as part of Lin et al.’s hybrid reconnection shift. However, we

cannot use random replay for bidirectional paths unless we know

which technique generated the path: a path combining two subpaths

can only be reproduced by replaying the random number states for

the camera and light subpaths up until the connection vertices.

Another challenge comes from light tracing techniques, i.e., 𝑡 ≤ 1,

as such paths can contribute to any pixel. We must correctly weight

our samples to account for this fact. Furthermore, we need to design

a reuse scheme that works well for light tracing and caustics.

Finally, computing the BDPT MIS weight𝜔𝑠,𝑡 (Equation 6) during

spatiotemporal reuse can be quite involved. We cannot directly

apply van Antwerpen’s [2011] efficient, recursive MIS formulation,

since shift mappings may change parts of the paths.

Below, we address the aforementioned challenges:

• Section 4: We present an extended path space that includes
information about the sampling technique, and derive the

corresponding GRIS estimator for bidirectional path tracing

in the extended path space,

• Section 5: We identify shift mappings for bidirectional con-

nections and light tracing, and

• Section 6: We generalize the recursive MIS formulation to

efficiently compute the MIS weight 𝜔𝑠,𝑡 during reconnection.

Finally, in Section 7, we discuss our GPU implementation of a

ReSTIR-based bidirectional path tracer.

4 BIDIRECTIONAL RESTIR WITH A PATH SPACE
EXTENSION

In this section, we derive our bidirectional ReSTIR estimator by

applying GRIS in an extended path space. We want to apply GRIS to

resample over all bidirectional sampling techniques, using correct

MIS weights 𝜔𝜏 to allow unbiased spatiotemporal reuse.

Previous ReSTIR methods directly apply GRIS to the path integral

(Equation 1) by sampling paths and merging them into reservoirs.

As mentioned, using random replay shift mappings complicates this

case: existing formulations do not allow shift mapping to depend

on a path’s sampling technique. Thus, when shifting via random

replay, we do not know the camera and light subpath lengths.

Therefore, we apply GRIS in an extended path space. We pair path

samples 𝑋 with the technique indices 𝜏 used to generate them in

extended paths 𝑋 = (𝑋, 𝜏). All extended paths of a given technique 𝜏

define the technique’s path space Ω𝜏 and our extended path space Ω̂
is the union of all sample-technique pairs, Ω̂ =

⋃
𝜏 Ω𝜏 . Our extended

path space integral is then:

𝐼 =

∫
Ω
𝑓 (𝑥) d𝑥 =

∑︁
𝜏

∫
Ω𝜏

𝜔𝜏 (𝑥) 𝑓 (𝑥) d𝑥,

=

∫
Ω̂
𝜔𝜏 (𝑥) 𝑓 (𝑥) d(𝑥, 𝜏),

(18)

where 𝜔𝜏 (𝑥) is the technique MIS weight of path 𝑥 under tech-

nique 𝜏 . We weight the measurement contribution 𝑓 with these MIS

weights to avoid counting a path’s contribution multiple times.

Now, our goal is to apply GRIS on the extended path space integral

(Equation 18). To apply GRIS, we first need two items: the target

function 𝑝 and shift mapping 𝑇 . We set the target function to be

always weighted by the technique MIS weight 𝜔𝜏 :

𝑝 (𝑥) = 𝜔𝜏 (𝑥)𝑞(𝑥), (19)
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where 𝑥 = (𝑥, 𝜏) and 𝑞 is a user-defined target function. We always

set 𝑞 to be the luminance of the measurement contribution 𝑓 . We

then assume technique-specific shift mappings, i.e., the output path

depends on the technique, but the technique is not changed in the

shift:

𝑇 (𝑥) = 𝑇 ((𝑥, 𝜏)) = (𝑇𝜏 (𝑥), 𝜏), (20)

where𝑇𝜏 is the shift mapping defined for technique 𝜏 . Wewill specify

𝑇𝜏 in the next section. The Jacobian is simply���� 𝜕𝑇𝜕𝑥 ���� = ���� 𝜕𝑇𝜏𝜕𝑥 ���� . (21)

Combining these, we can directly apply GRIS to estimate the ex-

tended path space integral (Equation 18). For the resampling output

𝑌 = (𝑌, 𝜏) sampled from the shifted inputs 𝑇𝑖 (𝑋𝑖 ) proportionally to

resampling weights𝑤𝑖 , we get

⟨𝐼 ⟩ = 𝜔𝜏 (𝑌 ) 𝑓 (𝑌 )𝑊𝑌
. (22)

The unbiased contribution weight for the chosen sample at GRIS

resampling is

𝑊
𝑌
=

1

𝑝 (𝑌 )

𝑀∑︁
𝑖=1

𝑤𝑖 , (23)

where 𝑝 is given by Equation 19, and the candidates’ resampling

weights are, denoting 𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 ),

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) 𝑝 (𝑌𝑖 )𝑊�̂�𝑖

���� 𝜕𝑇𝑖
𝜕𝑋𝑖

���� . (24)

Here,𝑚𝑖 is the generalized balance heuristic (Equation 17), with a

substitution of our 𝑝 (Equation 19) and Jacobian (Equation 21) into

the definition of 𝑝←𝑖 in Equation 15.

Like Lin et al. [2022], we use the generalized balance heuristic

for temporal reuse and pairwise MIS [Lin et al. 2022; Wyman et al.

2023] for spatial reuse. We use pairwise MIS for spatial reuse to

avoid the quadratic cost of the balance heuristic. For temporal reuse,

we use the balance heuristic since temporal reuse always has just

two candidates (the current and prior frame’s samples).

In initial sampling, the unbiased contribution weight𝑊
�̂�𝑖

for a

bidirectional sample-technique pair 𝑋𝑖 = (𝑋𝑖 , 𝜏𝑖 ) from technique

𝜏𝑖 = (𝑠, 𝑡) is the reciprocal of the subpath sampling PDFs:

𝑊
�̂�𝑖

=

{
1

𝑝 (𝑍𝑖 )
1

𝑝 (𝑌𝑖 )
1

𝑝𝐿 (𝑌𝑖 ) 𝑠 > 1, 𝑡 > 1

1

𝑝 (𝑍𝑖 )
1

𝑝 (𝑌𝑖 ) otherwise

, (25)

where 𝑍𝑖 and 𝑌𝑖 are the camera and light subpaths, respectively, and

𝑝𝐿 (𝑌𝑖 ) is the probability of selecting 𝑌𝑖 for subpath connection.

Initial sampling generates a path for each technique within a

pixel, and we use GRIS to select one. The resampling MIS weights

for resampling one path-technique pair 𝑥 = (𝑥, 𝜏) from the initial

candidates are, with 𝜏 = (𝑠, 𝑡),

𝑚𝑖 (𝑥) =
{

1/𝑁𝐿 𝑡 ≤ 1

1 otherwise

, (26)

where 𝑁𝐿 is the number of light subpaths. The number of samples a

pixel can receive varies by technique: Light tracing techniques 𝑡 ≤ 1

can contribute to any pixel, so each pixel receives 𝑁𝐿 light tracing

samples, requiring the divide by 𝑁𝐿 to normalize. Other techniques

𝑡 ≥ 2 generate samples only for the camera subpath’s pixel. With
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Fig. 3. Bidirectional shift mapping. Our shift on a path with 𝑡 = 6 and
𝑠 = 4. We shift the base path (solid lines) to a new primary hit 𝑥 ′

1
. When

𝑡 > 1, our bidirectional shift map follows the hybrid shift from Lin et al.
[2022], where base path’s random numbers are copied before reconnecting
to the reconnection vertex 𝑥𝑟 . We shift the light subpath with random replay,
and reconnect the camera subpath to the shifted light subpath. Note that if
𝑥𝑟 ≠ 𝑦𝑠−1 (as in this figure) our shift involves two reconnections: once to
reconnect to 𝑥𝑟 and again for 𝑦𝑠−1.

one camera subpath per pixel and each subpath vertex connected to

one light subpath, all the other path-technique spaces receive one

sample each per pixel.

5 SHIFT MAPPINGS FOR BIDIRECTIONAL
SPATIOTEMPORAL REUSE

Now, we define our technique-specific bidirectional hybrid shift

mapping 𝑇𝜏 (Equation 20) for 𝜏 = (𝑠, 𝑡). We separately discuss three

cases: camera tracing techniques (𝑡 ≥ 2), light tracing techniques

(𝑡 ≤ 1) where the path is non-caustic, and light tracing techniques

(𝑡 ≤ 1) where the path is caustic. A path is caustic if the third vertex

from the camera, 𝑥2, is classified as non-rough. A key caustic path

property is reconnections from the primary hit are not possible as

𝑥2 is non-rough, leading us to use random replay instead.

Path tracing, next event estimation, and light subpath connections
(𝑡 ≥ 2). When techniques have a camera subpath, we shift the light

subpath (if 𝑠 > 0) with random replay and the camera subpath (if

𝑡 >1) with the hybrid shift mapping of ReSTIR PT [Lin et al. 2022].

Case 𝑠 =0 corresponds to path tracing from the camera and hitting

an emitter; 𝑠 = 1 corresponds to next event estimation, and 𝑠 ≥ 2

connects to a non-degenerate light subpath.

For techniques with subpath connections (𝑡 > 1 and 𝑠 > 0), we

always reconnect (at latest) to the first light subpath vertex. As

Manzi et al. [2015], we only allow subpath connections on vertices

classified as rough at sampling time. Thus, for BDPT to connect a

camera and light subpath, the connected vertices must be classified

rough, so a reconnection shift will also succeed. We do not impose a

distance constraint for reconnection between the light and camera

subpaths, as technique MIS weights𝑤𝜏 naturally lower weights for

short connections. Additionally, if a shift changes the classification

of either vertex (e.g., a rough vertex becomes non-rough) we then

force a shift failure to maintain bijectivity.

Figure 3 illustrates a temporal shift for a path with 𝑡 = 6 and

𝑠 = 4. We first trace a new camera subpath from the target pixel’s

primary hit 𝑥 ′
1
. If we sample two consecutive rough vertices, we can

reconnect to the second. Otherwise, we reuse the random numbers
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Fig. 4. Light tracing shift mapping. Here we illustrate our temporal shift
mapping for light tracing techniques (𝑡 ≤ 1). We apply random replay
from the light until the the secondary hit 𝑥 ′

2
. If 𝑥 ′

2
is rough, then we can

reconnect to the new primary hit 𝑥 ′
1
(top). Otherwise, we continue with

random replay (bottom), and reconnect to the camera directly. In the latter
case, the primary hit (and therefore the pixel index) is determined by the
random seed, which means we cannot shift to arbitrary primary hits. For
this reason, we store these paths in separate caustic reservoirs, which do not
interact with standard reservoirs used for all other paths.

that generated the original path’s next direction (i.e., apply a random

replay shift), and keep tracing the shifted path.

Light tracing (𝑡 ≤ 1), non-caustic. For 𝑡 =1 techniques, light sub-

paths are connected directly to the camera. As we only perform

bidirectional connections between rough vertices, this implies the

primary hit 𝑥1 is rough. If the secondary hit 𝑥2 is also rough, then the

path is non-caustic and a spatial shift is possible. We apply a reverse

hybrid shift which shifts the light subpath using random replay until

the secondary hit 𝑥 ′
2
, then reconnects to the new primary hit 𝑥 ′

1
(see

Figure 4, top). If the new primary hit 𝑥 ′
1
is not rough, reconnection

is not possible and the shift fails. Just like the forward hybrid shift

used for camera subpaths, our reverse hybrid always reconnects the

first two consecutively-rough vertices from the camera, which are

always the primary and secondary hits 𝑥1↔𝑥2 as we only use this

shift for non-caustic paths.

Despite replacing the last BSDF direction sampling with a recon-

nection to the primary hit, the technique index does not change: The

shift mapping shifts the extended path (𝑥, 𝜏) into another extended

path (𝑇𝜏 (𝑥), 𝜏 ) inside the same layer of the extended path space. Our

shift mappings never change the technique index.

Light tracing (𝑡 ≤ 1), caustic. For caustic paths, the secondary
hit 𝑥2 is non-rough, making reconnection impossible. Prior work

defined shifts on such paths (e.g., Lehtinen et al.’s [2013] mani-

fold shift), but they are poor fits for real-time, requiring expensive

optimization procedures and per-vertex storage. We instead shift

caustics temporally via random replay only (see Figure 4, bottom).

Unlike our shifts for other techniques, this changes the primary

hit 𝑥1 and thus the path’s pixel filter contribution (𝑊e in Equation 2).

To best preserve the sample’s contribution, the sample should be

shifted to the pixel where the pixel filter contribution is largest. Our

shift mapping accomplishes this by projecting the shifted primary

hit 𝑥 ′
1
onto the screen; the shifted sample is stored at this new pixel.

This may shift multiple caustic samples to the same pixel, and GRIS

automatically selects one of them. This essentially forward-projects

caustic paths to the next frame, using random replay instead of

motion vectors, and GRIS combines the samples. We justify this

mathematically in Appendix A.

5.1 Separating caustic reservoirs
As discussed above, we shift caustic 𝑡 ≤ 1 paths purely via random

replay, which makes spatial shifts to arbitrary vertices impossible.

Using spatially shifted reservoirs greatly degrades caustic quality

as the non-caustic spatial neighbors are selected more often than

low-probability caustic samples. For spatial reuse without this degra-

dation, we store caustic samples in separate per-pixel reservoirs that

are not spatially reused. These caustic reservoirs are identical to regu-
lar reservoirs except they can only contain caustic samples. The final

image simply sums the per-pixel estimates from both reservoirs.

Mathematically, separating caustic reservoirs means having two

𝑡 ≤ 1 reservoirs, the non-caustic reservoir using 𝑓 = 𝑝 = 0 for

caustic paths and the caustic reservoir defining 𝑓 = 𝑝 = 0 for non-

caustic paths. Whether a 𝑡 ≤ 1 path is caustic is detected simply from

the roughness of secondary hit 𝑥2. Both reservoirs are populated

from the same initial candidates but use different shift mappings:

caustic paths use random replay only, while non-caustic paths use

reconnection.

Confidence weights. ReSTIR reservoirs store confidence weights

𝑐𝑖 that count how many samples each has processed. These weight

the samples from different domains during spatiotemporal reuse

(Equation 17). Importantly, confidence weights must remain inde-

pendent of actualized samples for GRIS to remain unbiased; they

should only count possible samples. Intuitively, 𝑐𝑖 is unaffected by

specific samples (if any) found each frame. For instance, we cannot

update confidence weights based on if caustic samples happen to

land in the current pixel, as that would correlate the weights with

the samples.

We instead update 𝑐𝑖 for caustic reservoirs using a proxy confi-

dence 𝑐𝑣 which is the weight of the prior frame’s motion-vector-

mapped caustic reservoir (as in standard temporal reuse):

𝑐𝑖 ← 𝑐𝑖 + 𝑐𝑣, (27)

where pixel 𝑣 with weight 𝑐𝑣 is found in the prior frame via (diffuse)

motion vectors (e.g., 𝑣 = motionVecs[𝑖]). This gives unbiased results,
as 𝑐𝑣 is independent of the samples, and works well for static scenes.

Diffuse motion vectors are not ideal, e.g., for animated caustics, and

better quality would be achievable if we could define caustic motion

vectors. Still, diffuse motion vectors effectively handle new pixels

entering the image due to camera rotation. This only affects updates

to 𝑐𝑖 ; the resampling MIS weight formulas remain unchanged.
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Ours (Copying 𝜔𝑠,𝑡 ) Ours (Section 6.2)

Fig. 5. Relative error offset (i.e., 0.5 + (⟨𝐼 ⟩ − 𝐼 )/𝐼 ) at 1 sample per pixel on
Veach Bidir, comparing copying the MIS weight 𝜔𝑠,𝑡 during spatial shifts
(left) to correctly recomputing it for the shifted path (right) as in Section 6.2.
Just copying the MIS weight causes bias; this is fixed by recalculating the
shifted sample’s MIS weight.

5.2 Shift Jacobians
Below we give formulas for our shift mapping Jacobians in the area

measure. The Jacobian for a path shift is the product of Jacobians

at each vertex. We denote quantities on the offset path as prime

(e.g., 𝑥 ′
1
is the shifted primary hit). For full derivations and further

discussion, we refer to prior works [Hua et al. 2019; Lin et al. 2022].

For all reconnections, the Jacobian in the area measure is just 1.

For random replay bounces on the camera subpath, the Jacobian is

the ratio of area-measure sampling PDFs of the vertices:���� 𝜕𝑥 ′𝑖𝜕𝑥𝑖

���� = ����� −→𝑝𝑖−→𝑝𝑖 ′
����� , (28)

where
−→
𝑝𝑖 is the forward area-measure PDF of sampling 𝑥𝑖 from 𝑥𝑖−1,

and
−→
𝑝𝑖
′
is the area-measure PDF of sampling 𝑥 ′

𝑖
from 𝑥 ′

𝑖−1
.

For the “reverse random replay” shift, which is applied to the light

subpath, the Jacobians are identical but in the reverse direction:���� 𝜕𝑥 ′𝑖𝜕𝑥𝑖

���� = �����←−𝑝𝑖←−𝑝𝑖 ′
����� , (29)

where
←−
𝑝𝑖 denotes the reverse area-measure PDF of sampling 𝑥𝑖 from

𝑥𝑖+1, and
←−
𝑝𝑖
′
is the area-measure PDF of sampling 𝑥 ′

𝑖
from 𝑥 ′

𝑖+1.

6 FAST MIS WEIGHT COMPUTATION
After shifting a path, we must recompute its MIS weight 𝜔𝜏 in

the new domain. This is prohibitively expensive, requiring PDF

evaluations at every path vertex.We could simply copy the candidate

path’s MIS weight, but this introduces bias (see Figure 5). Instead,

we provide an efficient recursive formulation for recomputing 𝜔𝜏

during reconnection. We also provide bounds on the bias associated

with copying the MIS weight in Section 6.4.

We build on prior work [Georgiev 2012; van Antwerpen 2011]

which optimizes the formulas for 𝜔𝜏 allowing computation using

only information at the connected subpath vertices 𝑦𝑠−1 and 𝑧𝑡−1.

Specifically, we store extra partial MIS quantities per vertex, and
compute 𝜔𝜏 from these quantities at 𝑦𝑠−1 and 𝑧𝑡−1. Partials are

computed incrementally, i.e., values at some vertex 𝑧𝑖 derive from

quantities at 𝑧𝑖−1, allowing efficient computation during sampling.

We aim to compute partial MIS quantities at the end of the camera

subpath 𝑧𝑡−1 only using information available during reconnection,

without visiting the rest of the camera subpath. We store additional

information with the subpath and use that to recover the partial MIS

quantities needed to compute 𝜔𝜏 during reconnection. Importantly,

the size of the additional information is fixed and independent of

the subpath length, which is key for performance.

If the scene changes or animates, these quantities must be updated.

For temporal reuse, we already retrace the whole path, so we can

compute the MIS weight as usual. During spatial reuse, we use our

recursive MIS algorithm to recover only the information needed to

compute the MIS weight, without traversing the entire path.

6.1 Recursive MIS
Here we briefly review the recursive MIS algorithm. We adopt the

implementation and notation from Georgiev [2012], excluding ver-

tex merging. We store two quantities 𝑑VC

𝑖
and 𝑑

p

𝑖
(where 𝑑p

is the

same as Georgiev’s 𝑑VCM term) at subpath vertices 𝑦𝑖 , 𝑧𝑖 . These

quantities are initialized at the beginning of each subpath as:

y1 : 𝑑
p

1
=

(
𝑝connect

0

𝑝 trace

0

1

−→
𝑝1

)𝛽
, z1 : 𝑑

p

1
=

(
𝑝connect

0

𝑝 trace

0

𝑁𝐿

−→
𝑝1

)𝛽
,

𝑑VC

1
=

( ←−𝑔 0

𝑝 trace

0

−→
𝑝1

)𝛽
, 𝑑VC

1
= 0,

(30)

and updated during path sampling as

𝑑
p

𝑖
= [𝑥𝑖−1 nondelta]

(
1

−→
𝑝𝑖

)𝛽
, (31)

𝑑VC

𝑖 =

(←−−−𝑔𝑖−1

−→
𝑝𝑖

)𝛽 (
[𝑥𝑖−1 nondelta] 𝑑p

𝑖−1
+

(←−
𝑝 𝜎
𝑖−2

)𝛽
𝑑VC

𝑖−1

)
. (32)

where, following the notation in Section 2,
−→
𝑝𝑖 is the area-measure

PDF of sampling 𝑥𝑖 from 𝑥𝑖−1,
←−
𝑝 𝜎
𝑖
is the solid-angle-measure PDF of

sampling 𝑥𝑖 from 𝑥𝑖+1,
←−𝑔𝑖 is the geometry term which converts

←−
𝑝 𝜎
𝑖

to the area measure, and 𝛽 is the power used by the MIS heuristic

(i.e., 𝛽 =1 for balance heuristic or 𝛽 >1 for power heuristic). 𝑝connect

and 𝑝 trace
denote the probability densities of the actual technique

used to sample 𝑦0, which depends on whether 𝑦0 is used to start a

new light subpath or connect to a camera subpath (e.g., for NEE).

The bracket notation [𝑥𝑖 nondelta] evaluates to 1 if the expression

inside the bracket is true (i.e., if a delta BSDF was sampled at 𝑥𝑖 ), or

0 otherwise.
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The full technique MIS weight is then recovered using

𝜔𝜏 = (�̄�𝑠−1 (𝑦) + 1 + �̄�𝑡−1 (𝑧))−1 , (33)

where �̄�𝑠−1 and �̄�𝑠−1 are weights from the light and camera sub-

paths, computed depending on the technique as

• Vertex Connection (𝑠 > 1, 𝑡 > 1)

�̄�𝑠−1 (𝑦) =
(←−
𝑝 𝑠−1

)𝛽 (
𝑑
p

𝑠−1
+

(←−
𝑝 𝜎
𝑠−2

)𝛽
𝑑VC

𝑠−1

)
, (34)

�̄�𝑡−1 (𝑧) =
(←−
𝑝 𝑡−1

)𝛽 (
𝑑
p

𝑡−1
+

(←−
𝑝 𝜎
𝑡−2

)𝛽
𝑑VC

𝑡−1

)
, (35)

• Camera Tracing (𝑠 = 0)

�̄�𝑠−1 (𝑦) = 0, (36)

�̄�𝑡−1 (𝑧) =
(
𝑝connect

𝑡−1

)𝛽
𝑑
p

𝑡−1
+

(
𝑝 trace

𝑡−1

)𝛽 (←−
𝑝 𝜎
𝑡−2

)𝛽
𝑑VC

𝑡−1
, (37)

• Next Event Estimation (𝑠 = 1)

�̄�0 (𝑦) =
( ←−

𝑝0

𝑝connect

0

)𝛽
, (38)

�̄�𝑡−1 (𝑧) =
(
𝑝 trace

0
(𝑦)

𝑝connect

0
(𝑦)

)𝛽 (←−
𝑝 𝑡−1

)𝛽 (
𝑑
p

𝑡−1
+

(←−
𝑝 𝜎
𝑡−2

)𝛽
𝑑VC

𝑡−1

)
, (39)

• Light Tracing (𝑡 = 1)

�̄�𝑠−1 (𝑦) =
(
𝑝 trace

0
(𝑧)

𝑝connect

0
(𝑧)

←−
𝑝 𝑠−1

𝑁𝐿

)𝛽 (
𝑑
p

𝑠−1
+

(←−
𝑝 𝑠−1

)𝛽
𝑑VC

𝑠−1

)
, (40)

�̄�0 (𝑧) = 0. (41)

For further explanation and derivation, see Georgiev [2012].

6.2 Recursive Reconnection MIS
The quantities𝑑VC

𝑡−1
and𝑑

p

𝑡−1
are required to compute theMISweight

for a path. However, during reconnection, we only retrace the path

up to the reconnection vertex 𝑥𝑟 . A straightforward approach is to

visit the rest of the camera subpath after the reconnection vertex

just to compute 𝑑VC

𝑡−1
and 𝑑

p

𝑡−1
, however this makes the algorithm

prohibitively expensive.

We instead derive a formulation for computing 𝑑VC

𝑡−1
and 𝑑

p

𝑡−1

using information available at the reconnection vertex 𝑥𝑟 (where

𝑟 < 𝑡 − 1), without visiting the rest of the camera subpath.

Our algorithm works by computing and storing extra quantities

when the camera subpath is first sampled. These quantities are:

𝛾 =

(←−𝑔 𝑡−2

−→
𝑝 𝑡−1

)𝛽
, (42)

¯𝜆VC =

( ←−
𝑝𝑟
−→𝑔 𝑟+1

)𝛽 𝑡−3∏
𝑖=𝑟+1

( ←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
, (43)

¯𝜆P = [𝑥𝑟+1 nondelta]
𝑡−3∏
𝑖=𝑟+1

( ←−
𝑝 𝑖
−→
𝑝 𝑖+1

)𝛽
, (44)

𝜎 =

𝑡−2∑︁
𝑖=𝑟+2

[𝑥𝑖 nondelta] 𝑑p

𝑖

𝑡−3∏
𝑗=𝑖

( ←−
𝑝 𝑗

−→
𝑝 𝑗+1

)𝛽
. (45)

In our implementation, we compute these quantities recursively

by updating them as the path is traced. This is easily done by adding

𝑑
p

𝑖
into 𝜎 at each bounce, then multiplying

¯𝜆VC, ¯𝜆P, and 𝜎 by the

ratio of reverse and forward PDFs at each bounce. We provide an

implementation of this process in Python as supplemental material.

6.3 Computing 𝑑VC
𝑡−1

If the reconnection vertex is the last vertex on the camera subpath

(i.e., 𝑟 = 𝑡 − 1), then Equation 32 can be used without further modi-

fication.

If the reconnection vertex is the second-to-last vertex on the

camera subpath (i.e., 𝑟 = 𝑡 − 2), we use a slightly modified version of

Equation 32 which just has the geometry term separated from
−→
𝑝 𝜎
𝑟+1

in the denominator, as it does not change during reconnection:

𝑑VC

𝑡−1
=

( ←−𝑔 𝑟
−→
𝑝 𝜎
𝑟+1
−→𝑔 𝑟+1

)𝛽 (
𝑑
p

𝑟 +
(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC

𝑟

)
. (46)

In this case, all quantities are computed during reconnection except

the ratio
←−𝑔 𝑟 / −→𝑔 𝑟+1 which is computed and cached during initial

sampling, and updated when the scene changes.

For the general case of 𝑟 < 𝑡 − 2 we use the additional quantities

defined above:

𝑑VC

𝑡−1
= 𝛾

©­­­­­­«

(
1

−→
𝑝 𝜎
𝑟+1

)𝛽
¯𝜆VC

(
𝑑
p

𝑟 +
(←−
𝑝 𝜎
𝑟−1

)𝛽
𝑑VC

𝑟

)
+

(
1

−→
𝑝 𝜎
𝑟+1

)𝛽 (
1

−→𝑔 𝑟+1

)𝛽
¯𝜆P + 𝜎

ª®®®®®®¬
. (47)

In our implementation, we also cache all other quantities needed to

compute the weights �̄�𝑡−1 and �̄�𝑠−1 used to compute the final MIS

weight (Equation 33).

6.4 Bias from MIS weight reuse
Faster rendering can be achieved by simply copying the MIS weight

from the base path instead of recomputing it. This introduces bias,

but eliminates the need for our recursive reconnection MIS algo-

rithm. In practice, we observe a small darkening bias near corners

and shadow boundaries. In our supplementary document, we show

the relative bias is bounded by the MIS weight error, i.e.,

|Bias|
𝐼
≤ 𝜖𝜔 ,

where 𝜖𝜔 bounds the relative error between the correct MIS weight

and the copied MIS weight from the original domain.

7 IMPLEMENTATION
We implemented bidirectional path tracing in the Falcor rendering

framework [Kallweit et al. 2022] using the Slang shading language.

At a high-level, our initial sampling resembles SmallVCM [Georgiev

et al. 2012], but without vertex merging. We first sample a fixed num-

ber of light subpaths via Algorithm 1, parallelizing over subpaths.

Initial vertices 𝑦0 are selected according to each light’s emissive

power. After sampling light subpaths, we sample camera subpaths,
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parallelizing over pixels, connecting them to light subpaths in Algo-

rithm 2. Finally, pixels reuse full paths from spatiotemporal neigh-

bors, using Algorithm 3 to shift paths between pixel domains.

7.1 Initial sampling
Light subpath sampling. In Algorithm 1, light subpaths are traced

and all connectable light subpath vertices are atomically appended

to the LVC (line 8). These vertices are also connected to the camera

to form full paths (line 9), corresponding to the light tracing tech-

nique. These paths must be resampled into the destination pixel,

however reservoir merging is not an atomic operation. To avoid race

conditions from merging, we instead insert the key-value pair (𝑘, 𝑟 )
into a parallel multimap which we refer to as the Light Reservoir

Map (LRM), where 𝑘 is the path’s pixel index and 𝑟 is a new reser-

voir containing the sampled path (line 10). Afterwards, the LRM is

efficiently sorted on the GPU via prefix sum operations, following

Boissé’s [2021] parallel hash map (line 11).

Camera subpath sampling. After light subpath sampling, Algo-

rithm 2 samples camera subpaths and connects them to random

light subpath vertices to form full paths. For NEE (where 𝑠 =1), we

sample light primitives according to their emissive power. For sub-

path connection techniques (where 𝑠 >1), we select light subpath

vertices from the LVC uniformly, corresponding to 𝑝𝐿 = 𝑁𝐿/|𝐿𝑉𝐶 |
in Equation 25.

Merging light tracing paths. After camera subpath sampling, Algo-

rithm 2 merges the reservoirs from light tracing in each pixel (lines

15-20). Conceptually, light tracing reservoirs are merged into every
pixel’s reservoir, and we only use the LRM as an acceleration struc-

ture to skip zero-contribution paths within each pixel. During this

step, we separate reservoirs containing caustic paths as mentioned

in Section 5.1, corresponding to the check on line 17 in Algorithm 2.

The full image is the sum of caustic and noncaustic contributions,

which we recover by summing the estimates from our caustic and

noncaustic reservoirs.

Confidence weights. The confidence weight 𝑐𝑖 of the resulting

reservoir is always 1, regardless of how many paths Algorithm 2

found. This is because confidence weights cannot depend on the

random samples, andmust be updated deterministically based on the

sampling process. In practice, we implement this by initializing our

reservoirs with 𝑐𝑖 =1, and only updating 𝑐𝑖 during spatiotemporal

reuse.

7.2 Spatiotemporal sample reuse
After initial sampling, pixels reuse samples from neighbor pixels and

the prior frame. For both spatial and temporal reuse, Algorithm 3

is used to shift paths to new primary hits. For caustic samples, the

primary hit is unused, and the shifted path instead contributes to

an arbitrary pixel based on the reverse random replay shift. For this

reason, we temporally shift caustic paths separately, merging them

into the new pixels based on the random replay shift. As in initial

sampling, this occurs in two passes using the LRM to efficiently sort

the shifted paths into pixels.

V-Buffer hit 𝑦1

Fig. 6. Light tracing hits and V-Buffer hits. It is possible to connect light
subpaths to the camera (purple dashed line) which cannot be shifted to the
visibility buffer hit for the pixel due to differences in visibility (red dashed
line).

Integration measures. Integrating with respect to surface area (as

in Equation 1) introduces geometry terms𝐺 (𝑥𝑖 ↔ 𝑥𝑖+1) which con-

vert differential areas at 𝑥𝑖+1 to differential projected solid-angles at

𝑥𝑖 . Many geometry terms cancel when evaluating 𝑓 /𝑝 (Equation 3),

as 𝑝 also has geometry terms after converting sampling probability

densities to area measure. Renderers often omit cancelled geometry

terms entirely, essentially integrating with respect to solid-angle

everywhere. This reduces computation and improves numerical

stability where geometric inverse-squared terms go to zero.

For sample reuse, we use the unweighted integrand (𝑓 without

dividing by 𝑝), so we cannot rely on this cancellation. To avoid

numerically-unstable geometry terms, we integrate with respect to

solid-angle at each vertex; this slightly changes our Jacobians. We

give solid-angle parameterizations of shift Jacobians in Appendix B.

Stable but biased temporal reuse of light traced samples. Many

ReSTIR implementations [Bitterli et al. 2020; Lin et al. 2022] store

primary hits in a visibility buffer [Burns and Hunt 2013]; this works

well for unidirectional path tracing. However, bidirectional path

tracing connects light paths to the camera directly, which makes it

possible to sample paths occluded from these primary hits (Figure 6).

These samples must be included for an unbiased estimate, but they

degrade temporal reuse as shifting them to the next frame’s primary

hit immediately fails. To fix this, we add a simple rejection heuristic

to reject non-caustic 𝑡 ≤ 1 paths that cannot be shifted to the primary

hit. This greatly improves temporal stability, albeit with a negligible

darkening bias in penumbra regions due to missing samples. A

better solution might apply Zhang et al.’s [2024] concurrent Area

ReSTIR to reuse samples within a pixel.

Lightweight BDPT. A simple way to improve performance is to

omit techniques involving subpath connections. We refer to this

version of our algorithm as "lightweight" (LW) BDPT. Specifically,

LW BDPT refers to the combination of 𝑠 = 0 (PT), 𝑠 = 1 (NEE) and

𝑡 = 1 (light tracing) techniques. This is an appealing middle ground

as it provides high quality caustic sampling with a lower cost than

full BDPT. We show results for this algorithm in Figure 11.

8 RESULTS
In Figure 11, we show several scenes [Bitterli 2016] that are chal-

lenging with unidirectional path tracing. All results use an RTX

4090 GPU, a Ryzen 7 3700x CPU, at a resolution of 1920×1080. We
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Algorithm 1: SampleLightPaths()

1 𝐿𝑉𝐶 ← ∅ // Light Vertex Cache

2 𝐿𝑅𝑀 ← ∅ // Light Reservoir Map

3 parallel for 𝑖 ← 1 to 𝑁𝐿

4 𝑦0 ← InitializeLightPath()

5 for 𝑗 ← 1 to 𝑁𝑏𝑜𝑢𝑛𝑐𝑒𝑠 − 1 do
6 𝑦 𝑗 ← TraceNewVertex(𝑦 𝑗−1)

7 if 𝑦 𝑗 is rough then
8 𝐿𝑉𝐶 .Append(𝑦 𝑗 ) // Append vertex to the LVC

9 (𝑟, 𝑘) ← ConnectToCamera(𝑦 𝑗 )

10 𝐿𝑅𝑀 .Insert(𝑘, 𝑟 ) // Append reservoir 𝑟 to pixel 𝑘

11 𝐿𝑅𝑀 .Sort() // Sort reservoirs into per-pixel lists

12 return (𝐿𝑉𝐶, 𝐿𝑅𝑀)

Algorithm 2: SampleInitialPaths(𝐿𝑉𝐶 , 𝐿𝑅𝑀)

1 parallel for 𝑖 ← 1 to 𝑁𝑝𝑖𝑥𝑒𝑙𝑠

2 𝑟𝑖 ← InitializeReservoir()

3 𝑥0 ← InitializeCameraPath()

4 for 𝑗 ← 1 to 𝑁𝑏𝑜𝑢𝑛𝑐𝑒𝑠 do
// Sample direction and trace ray

5 𝑥 𝑗 ←TraceNewVertex(𝑥 𝑗−1)

6 if 𝑥 𝑗 is rough then
// Connection strategies (𝑠 ≥ 1 techniques)

7 𝑟𝑁𝐸𝐸 ← ConnectToRandomLight(𝑥 𝑗 )

8 𝑟𝐿𝑉𝐶 ← ConnectToRandomLVC(𝐿𝑉𝐶, 𝑥 𝑗 )

9 𝑟𝑖 .Merge( 𝑟𝑁𝐸𝐸 )

10 𝑟𝑖 .Merge( 𝑟𝐿𝑉𝐶 )

11 if 𝑥 𝑗 is emissive then
// Found full path (𝑠 = 0 technique)

12 𝑟 ← EvalEmission(𝑥 𝑗 )

13 𝑟𝑖 .Merge( 𝑟 )

14

// Merge reservoirs from light tracing

15 𝑐𝑖 ← InitializeReservoir() // Caustic reservoir

16 foreach 𝑟𝐿𝑇 ∈ 𝐿𝑅𝑀 [𝑖] do
17 if 𝑟𝐿𝑇 .sample is caustic then
18 𝑐𝑖 .Merge(𝑟𝐿𝑇 )

19 else
20 𝑟𝑖 .Merge(𝑟𝐿𝑇 )

21 OutputReservoirs[𝑖] ← 𝑟𝑖

22 OutputCausticReservoirs[𝑖] ← 𝑐𝑖

compare numerical errors using mean absolute percentage error

(MAPE)
3
.

We sample 𝑁𝐿 =1920 ·1080 ≈ 2𝑀 light subpaths, unless otherwise

noted. All results use a maximum path length of 20 bounces, or

8 diffuse bounces (whichever is reached first), where a “diffuse

bounce” refers to sampling a BSDF lobe with roughness above the

connectability threshold.We classify vertices with roughness greater

than 0.08 as connectable, which is the minimum roughness our

3
We use MAPE = mean ( |𝐼 − 𝐼ref | /(𝐼ref + 0.01 · mean(𝐼ref ) )

Algorithm 3: ShiftPath(basePath, newPrimaryHit)

// This shows a temporal shift where camera, geometry, and

light can change. For a spatial shift, some ray traces

(inside functions marked with *) can be skipped due to

unchanged subpaths which have partial path throughputs

available in the reservoir.

1 𝑦 ← ShiftLightSubpath*(basePath)

2 if Caustic 𝑡 ≤ 1 case then
3 return ConnectToCamera(𝑦)

4 𝑥0 ...𝑥𝑟−1 ← ShiftCameraPrefix(basePath, newPrimaryHit)

5 if basePath.cameraBounces == 𝑟 − 1 then
6 𝑧 ← 𝑥0 ...𝑥𝑟−1

7 else
8 𝑥𝑟 ← basePath.CameraRcVertex

// Connect to the 1st suffix vertex

9 𝑥0 ...𝑥𝑟 ← Connect(𝑥0 ...𝑥𝑟−1, 𝑥𝑟 )
10 if basePath.cameraBounces > 𝑟 then
11 𝑥0 ...𝑥𝑟+1 ← TraceRay*(𝑥0 ...𝑥𝑟 ,

basePath.CameraRcVertexScatterDirection)

// Replay the rest of the suffix

12 𝑧 ← ExtendPathByReplay*(basePath, 𝑥0 ...𝑥𝑟+1)
13 else
14 𝑧 ← 𝑥0 ...𝑥𝑟

15 if basePath.numLightSubpathVertices == 0 then
16 return 𝑧

17 else
18 return ConnectToLightSubpath(𝑧, 𝑦)

material system supports. See Figure 7 for comparison with other

thresholds. We apply Russian roulette by randomly terminating

paths inside TraceNewVertex (Algorithm 2, line 5) according to the

probability

𝑝
terminate

(𝑥𝑖 ) = 0.2 · rgh(𝑥𝑖 ),
where rgh(𝑥𝑖 ) returns roughness of the material (not just the sam-

pled BSDF lobe) at vertex 𝑥𝑖
4
. We limit confidence weights 𝑐𝑖 to a

maximum of 20 in all experiments.

Our strongest results are on scenes lit primarily by caustics, e.g.,

the Bathroom and Sponza that only have emissive geometry inside

glass light fixtures. The glass fixtures in Sponza and Bathroom

cause next event estimation (𝑠 =1) to fail, which makes BSDF sam-

pling (𝑠 = 0) the only viable technique for ReSTIR PT. The glass

also causes failed reconnections, forcing ReSTIR PT to use (unidi-

rectional) random replay for most scene lighting; this introduces

obvious blotchy correlation artifacts. In contrast, our work effi-

ciently samples light paths through the glass, greatly improving

sampling of LSD*E paths and better resolving scene caustics.

In the Veach Bidir scene, the caustics on the wall are challeng-

ing without bidirectional techniques. Even at high sample counts,

unidirectional path tracing fails to resolve them. Additionally, when

4𝑝terminate cannot rely on camera subpath information (path length, throughput, etc.)

since this information is not known during light tracing [Georgiev 2012; van Antwerpen

2011].
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Reference 0.08 0.25 0.50 0.75 1.00

Fig. 7. The Veach Bidir scene with a metallic table with a roughness texture,
rendered with different roughness thresholds. Using too large of a threshold
disables bidirectional connections (including NEE) on rough surfaces, and
leads us to select less efficient shift mappings, which produces more noise.

the light is animated (Figure 9), our temporal caustic shift enables

efficient resampling between frames, greatly improving the result.

For diffuse lighting, as in theWhite Room, our improvement over

ReSTIR PT is reduced. Reconnection works well on these scenes,

enabling spatial reuse to share many light paths between pixels.

However, BDPT still improves the candidate distribution, so our

method still shows benefits, especially at low sample counts where

candidate path distribution especially matters.

In Figure 8, we show a cut-down version of our algorithmwithout

camera connections (𝑡 ≤ 1 techniques), similar to prior methods [Liu

and Gan 2023; Nabata et al. 2020]. Importantly, 𝑡 ≤ 1 techniques excel

at sampling caustic paths, making it the dominant technique on

these scenes. Evenwith only the 𝑡 =1 technique, most illumination in

the scene is well-sampled, except for regions where the primary hits

are not rough, which makes connecting to the camera impossible.

Our algorithm costs roughly twice as much as ReSTIR PT at the

same sample count. This is mostly because BDPT traces roughly

twice as many rays as regular path tracing, due to light tracing

and subpath connections. Our algorithm also employs additional

data structures (the LVC and caustic reservoirs) and a larger path

reservoir to store light subpath and recursive reconnection MIS

information, increasing register and memory pressures.

Our per-pixel reservoirs have size 244B if using our recursive

reconnection MIS, and 160B otherwise. The size of LVC vertices is

112B. We give the full contents of our reservoir and light vertex data

structures in the supplementary document. For 1920×1080 renders,
the total storage cost of our full unbiased algorithm is 8.2GB. We

did not attempt to optimize storage.

Figure 12 shows error (MAPE) over time for an offline variant of

our algorithm, compared to ReSTIR PT. As Lin et al. [2022] note,

temporal resampling is less effective for offline rendering as tempo-

ral correlations hurt offline convergence (when averaging multiple

frames). Instead, our offline variant uses spatial resampling only. As

BDPT has a higher-quality initial candidate distribution, our error

is lower than Lin et al. [2022].

Spatial reuse from pixels with very different target functions

can sometimes reduce efficiency [Pan et al. 2024; Tokuyoshi 2023].

While we observe better offline results than standard BDPT in all of

our scenes when measured per-sample, in some scenes the reduced

efficiency no longer compensates for the added computational cost

of resampling, leading to standard BDPT converging faster. This sug-

gests a careful study on how to best benefit from ReSTIR algorithms

in the offline context.

9 CONCLUSION
We presented a method to combine bidirectional path tracing with

ReSTIR. By combining spatiotemporal reuse and path-space sam-

pling, we enable interactive rendering of scenes with caustics and

complex occlusion; this was previously limited to offline renderers.

9.1 Limitations and future work
Not all scenes benefit from light tracing. In these cases, our method’s

efficiency may decrease below ReSTIR PT, due to being more ex-

pensive (Figure 10). However, this could potentially be improved

with better light subpath sampling strategies leveraging camera

information [Grittmann et al. 2018; Vorba et al. 2014].

We did not optimize our light subpath shifts. Our implementation

shifts camera and light subpaths in the same GPU dispatch, dealing

with caustic and non-caustic cases separately. A more optimal im-

plementation could reduce divergence by shifting camera and light

subpaths in separate dispatches.

As discussed in Section 5.1, we use a proxy confidence weight 𝑐𝑣
during temporal reuse, where 𝑣 is found via motion vectors. This is

suboptimal for animation, as animated caustics do not follow the

diffuse motion vectors. We did not explore alternative schemes to

update confidence weights. Future work could explore using infor-

mation from all caustic reservoirs to better update the confidence

weights.

Specular-diffuse-specular (SDS) paths such as the bathroom mir-

ror reflections are still challenging with our method. This is a known

limitation of bidirectional sampling [Veach 1997]. Future work could

apply vertex merging to capture these effects. Manifold shifts could

also help reuse in hard situations.
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A TEMPORAL CAUSTIC REUSE
The pixel a caustic path (𝑡 ≤ 1) hits is determined by its primary hit

vertex 𝑥1. We shift caustic paths temporally by random replay, i.e.,

re-tracing the path in the new frame with the same random numbers.

This means its pixel may change. This initially seems incompatible

with GRIS, which requires pre-selecting the reuse domains, and

the selection cannot depend on their samples. To resolve this, we

reformulate the reuse process as follows.

First, the domain of current and previous pixels covers the whole

image, but their support covers only the current pixel 𝑖 . The target

function 𝑞 is zero outside of the pixel, e.g., by a pixel filter ℎ,

𝑞𝑖 (𝑥) = ℎ𝑖 (𝑥)𝑝 (𝑥), (48)

where 𝑝 is the target function, 𝑥 is the path of the path-technique

pair 𝑥 , and ℎ𝑖 (𝑥) evaluates the pixel filter at the subpixel location
of 𝑥 ’s primary hit.

Second, in candidate sampling, all 𝑁𝐿 𝑡 ≤ 1 paths are conceptually

treated as candidates for each pixel 𝑖 , leading to resampling weights

𝑤𝑖 =
1

𝑁𝐿
ℎ𝑖 (𝑋𝑖 )𝑝𝑖 (𝑋𝑖 )𝑊�̂�𝑖

, (49)

where pixel filter ℎ𝑖 automatically discards samples not in pixel 𝑖 ,

and 𝑝 discards non-caustic paths. The initial sampling’s output 𝑋 ,

now a caustic path in pixel 𝑖 or a zero-contribution null sample ∅
[Wyman et al. 2023], is then chosen proportionally to the𝑤𝑖 .

Third, in temporal reuse, each current pixel 𝑖 conceptually reuses

from all prior frame pixels 𝑗 (and pixel 𝑖’s initial sampling). Most

pixels do not contribute, as the temporal random replay shift to 𝑖 fails.

Substituting 𝑞 (Equation 48) to the generalized balance heuristic

function (Equation 17) with confidence weights𝑀𝑖 yields

𝑚𝑖 (𝑥) =
𝑀𝑖ℎ𝑖 (𝑇 −1 (𝑥))𝑝←𝑖 (𝑥)∑

𝑗 𝑀𝑗ℎ 𝑗 (𝑇 −1 (𝑥))𝑝←𝑗 (𝑥) +𝑀isℎ𝑖 (𝑥)𝑝 (𝑥)
, (50)

where 𝑇 −1
is the random replay shift to the previous frame, shared

with all pixels, 𝑖 runs over all previous-frame pixels and the current

pixel’s initial sampling result, and 𝑗 runs over all previous-frame

pixels.𝑀is is the confidence weight given to the initial sample. We

immediately see that the pixel a caustic path 𝑥 shifts to with random

replay is unique, and hence the denominator contains only two

active terms, assuming the box filter, and simple sum over multiple

pixels for wider filters (the shift mapping, its Jacobian, and 𝑝 do not

depend on the pixel).

In the following, we assume a 1-pixel box filter to avoid notation

clutter without loss of generality. Given a sample 𝑋𝑖 from previous

frame’s pixel 𝑖 , and its successful random replay shift 𝑌𝑖 = 𝑇 (𝑋𝑖 ) in
the current pixel, a simple substitution yields

𝑚𝑖 (𝑌𝑖 ) =
𝑀𝑖𝑝prev (𝑋𝑖 )

��� 𝜕𝑇𝜕𝑋𝑖

���−1

𝑀𝑖𝑝prev (𝑋𝑖 )
��� 𝜕𝑇𝜕𝑋𝑖

���−1

+𝑀is𝑝 (𝑌𝑖 )
, (51)

where 𝑝 is the current frame’s target function, 𝑝prev is the previous

frame’s target function,𝑀𝑖 is the confidence weight of the source

pixel’s reservoir in the previous frame, and 𝑀is is the confidence

weight of the initial sample. If the shift does not succeed or 𝑋𝑖 does

not hit the current pixel when shifting, the resampling MIS weight

𝑚𝑖 (𝑌𝑖 ) is zero.
Similarly, the initial sample 𝑌is, which is already in current pixel’s

domain, gets a resampling MIS weight

𝑚is (𝑌is) =
𝑀is𝑝 (𝑌is)

𝑀𝑖𝑝prev (𝑋is)
��� 𝜕𝑇 −1

𝜕𝑌is

��� +𝑀is𝑝 (𝑌is)
, (52)

where 𝑋is = 𝑇 −1 (𝑌is) is the initial sample shifted to the previous

frame with random replay, and 𝑖 is the pixel it hits. If the shift fails

or hits no pixel, the term containing𝑀𝑖 is zero.

This mathematical construction allows temporal reuse of caustics

from pixels as defined by the random replay shift. It also allows

stratification and unbiased temporal accumulation of caustics in the

pixels they land, extending the limits of GRIS theory by seemingly

allowing the samples themselves to define the pixels included in

the MIS weights. Yet this does not eliminate the requirement to

keep confidence weights independent of realized samples. We still

cannot increment confidence weights by counting the number of

caustics landing on each pixel. We explain our method for updating

the caustic reservoirs’ confidence weights in Section 5.1.

B SOLID-ANGLE JACOBIANS
Here we give solid-angle Jacobians for our bidirectional hybrid

shift. For further discussion on the random replay and reconnection

Jacobians, we refer to Lin et al. [2022].

The solid-angle Jacobian for random replay is the ratio of solid-

angle sampling PDFs between original and shifted paths. We denote

the normalized direction from 𝑥𝑖 to 𝑥 𝑗 on the original path as 𝜔𝑖→𝑗 ,

and similarly the normalized direction from 𝑥 ′
𝑖
to 𝑥 ′

𝑗
on the shifted

path as 𝜔 ′
𝑖→𝑗

. For random replay on the camera subpath, we have���� 𝜕𝜔 ′𝑖−1→𝑖

𝜕𝜔𝑖−1→𝑖

���� = −→𝑝 𝜎
𝑖
−→
𝑝 ′𝜎
𝑖

(53)

and for random replay on the light subpath, we have���� 𝜕𝜔 ′𝑖+1→𝑖

𝜕𝜔𝑖+1→𝑖

���� = ←−𝑝 𝜎
𝑖
←−
𝑝 ′𝜎
𝑖

(54)

where
−→
𝑝 𝜎
𝑖
and
←−
𝑝 𝜎
𝑖
are the forward and reverse solid-angle PDFs of

sampling vertex 𝑥𝑖 , respectively (
−→
𝑝 𝜎
𝑖
is simply

−→
𝑝 𝑖 expressed in the

solid-angle measure).
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The Jacobian for forward reconnection is the ratio of forward

geometry terms along the reconnection edge:���� 𝜕𝜔 ′𝑖−1→𝑖

𝜕𝜔𝑖−1→𝑖

���� = ��𝑛′
𝑖
· 𝜔 ′

𝑖−1→𝑖

��
|𝑛𝑖 · 𝜔𝑖−1→𝑖 |

∥𝑥𝑖−1 − 𝑥𝑖 ∥2
∥𝑥 ′

𝑖−1
− 𝑥 ′

𝑖
∥2
, (55)

where 𝑛𝑖 is the geometry normal at 𝑥𝑖 . Note that we must also apply

the reconnection Jacobian to the edge between 𝑧𝑡−1 and 𝑦𝑠−1 for

𝑠 ≥ 1, 𝑡 ≥ 2 techniques (NEE and vertex connection).

For reconnection along the light subpath (only used for 𝑡 ≤ 1

techniques), reverse reconnection Jacobian is the ratio of reverse

geometry terms along the reconnection edge:���� 𝜕𝜔′𝑖+1→𝑖

𝜕𝜔𝑖+1→𝑖

���� = ��𝑛′
𝑖
· 𝜔 ′

𝑖+1→𝑖

��
|𝑛𝑖 · 𝜔𝑖+1→𝑖 |

∥𝑥𝑖−1 − 𝑥𝑖 ∥2
∥𝑥 ′

𝑖−1
− 𝑥 ′

𝑖
∥2

(56)

where 𝑖 =2 for noncaustic paths, where 𝑥 ′
2
is reconnected to 𝑥 ′

1
. For

caustic paths where a light subpath is reconnected directly to the

camera, the Jacobian is the same equation but with 𝑖 =1.
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