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1 WHY MUTATIONS DECREASE COVARIANCE

We present an argument for why mutating samples after tem-

poral reuse reduces covariance in the final image. We study the

problem in a simplified setting, which we believe captures the

essence.

In particular, we study the covariance between two pixels with

target functions p̂1 and p̂2, with pixels 1 and 2 spatially reusing

samples from random neighbors. We model random neighbor se-

lection as follows: The input samples for pixel i ∈ {1, 2} are X i
j

where j ranges from 1 to M , and their contribution weights are

W i
j . Superscripts denote the target pixel and subscripts the index

of its jth input; input samples for the pixels are assumed to be

distinct. As in ReSTIR DI, we assume samples lie in the same do-

main Ω and share the support (i.e., agree on visibility), with shift

mappings not needed for reuse between pixels (i.e., the identity

shift mapping is used with light vertices as they are). We also

use constant MIS weights 1/M . With this setup, we show a reduc-

tion in covariance in the limit case as the number of mutations

approaches infinity (assuming good importance sampling) and ar-

gue that benefits in the finite case arise from approximating the

limit case.

We interpret the input samples X i
j as the results of temporal re-

sampling and denote the final mutation results before spatial reuse

Y i
j and their contribution weights W ′ij . The assumption of good

importance sampling means that W i
j ≈ 1/p̄i

j (X i
j ), where p̄i

j is the

normalized version of the target function p̂i
j , i.e., p̄i

j = p̂i
j/‖p̂

i
j ‖.

We again denote the target pixel in the superscript and the index

of its jth input pixel in the subscript. Assuming a large number

of mutations implies that we can treat the mutation results Y i
j as

independent of each other, the input samples X i
j , and their contri-

bution weightsW i
j . The contribution weight of a mutated sample

Y i
j is

W ′ij =
p̂i

j (X i
j )

p̂i
j (Y i

j )
W i

j , (1)
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Table 1. Summary of Notation

X i
j
, W i

j
Pixel i ’s original input sample j and its contribution weight

Y i
j

, W ′i
j Pixel i ’s mutated input sample j and its contribution weight

Z i , W i Sample chosen for pixel i from the Y i
j

and its contribution weight

w i
j

Resampling weight for choosing Y i
j

as the new Z i

p̂i , p̄i Target function of pixel i and its normalized target PDF

p̂i
j
, p̄i

j
Target function of pixel i ’s input j and its target PDF

f i The integrand in pixel i , here f i = p̂i

Z̃ i , W̃ i Sample chosen for pixel i from the X i
j

and its contribution weight

w̃ i
j

Resampling weight for choosing X i
j

as the new Z̃ i

‖ · ‖ The 1-norm, ‖д ‖ =
∫

Ω
|д (x ) | dx , e.g., p̄ = p̂/ ‖p̂ ‖

while the resampling weight for choosing sample Y i
j for pixel i is

wi
j =

1

M
p̂i (Y i

j )W ′ij (2)

=
1

M

p̂i (Y i
j )

p̂i
j (Y i

j )
p̂i

j (X i
j )W i

j . (3)

The sample Z i selected for pixel i by resampling proportionally to

wi
j has the contribution weight

W i =
1

p̂i (Z i )

M∑

j=1

wi
j (4)

=
1

p̂i (Z i )

M∑

j=1

1

M

p̂i (Y i
j )

p̂i
j (Y i

j )
p̂i

j (X i
j )W i

j . (5)

Using the integrand of the rendering equation f i as our target func-

tion p̂i , the pixel estimate f i (Z i )W i is

p̂i (Z i )W i =
1

M

M∑

j=1

p̂i (Y i
j )

p̂i
j (Y i

j )
p̂i

j (X i
j )W i

j , (6)

and the covariance between estimates for pixels 1 and 2 becomes

Cov
(
p̂1 (Z 1)W 1, p̂2 (Z 1)W 2

)

=
1

M2

M∑

j=1

M∑

k=1

Cov ��
p̂1 (Y 1

j )

p̂1
j (Y 1

j )
p̂1

j (X 1
j )W 1

j ,
p̂2 (Y 2

k
)

p̂2
k

(Y 2
k

)
p̂2

k
(X 2

k
)W 2

k
�
� . (7)

Since we study the limit case in which the mutated samples Y i
j

are independent of other random variables, we can rewrite this ex-

pression using the relation Cov(XY ,Z ) = E[X ] Cov(Y ,Z ), which
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assumes that X is independent of Y and Z . Applying this relation

to both parameters of the covariance yields

=
1

M2

M∑

j=1

M∑

k=1

E

⎡⎢⎢⎢⎢⎣
p̂1 (Y 1

j )

p̂1
j (Y 1

j )

⎤⎥⎥⎥⎥⎦ E
⎡⎢⎢⎢⎢⎣
p̂2 (Y 2

k
)

p̂2
k

(Y 2
k

)

⎤⎥⎥⎥⎥⎦ Cov
(
p̂1

j (X 1
j )W 1

j , p̂
2
k

(X 2
k

)W 2
k

)
.

(8)

We now simplify the expression above by first writing E[
p̂i (Y i

j
)

p̂i
j
(Y i

j
)
]

as
‖p̂i ‖
‖p̂i

j
‖ E[

p̄i (Y i
j

)

p̄i
j
(Y i

j
)
], where we move the norms of the target func-

tions outside the expectation. Since we study the limit case of

near-infinite mutations, Y i
j has PDF p̄i

j (Y i
j ), and E[

p̄i (Y i
j

)

p̄i
j
(Y i

j
)
] =

∫
Ω
p̄i (y) dy = 1, which simplifies the expression for covariance to

=
1

M2

M∑

j=1

M∑

k=1

‖p̂1‖
‖p̂1

j ‖
‖p̂2‖
‖p̂2

k
‖

Cov
(
p̂1

j (X 1
j )W 1

j , p̂
2
k

(X 2
k

)W 2
k

)
. (9)

Here, the norms of p̂1
j and p̂2

k
normalize p̂ into p̄ inside the

covariance, yielding

=
‖p̂1‖‖p̂2‖

M2

M∑

j=1

M∑

k=1

Cov
(
p̄1

j (X 1
j )W 1

j , p̄
2
k

(X 2
k

)W 2
k

)
. (10)

Finally, we use the definition of covariance, Cov(X ,Y ) = E[(X −
μX ) (Y − μY )], and the relation E[p̄i

j (X i
j )W i

j ] =
∫

Ω
p̄i

j (x ) dx = 1 (by

the way unbiased contribution weights transform expectations

into integrals) to evaluate μX and μY and reach the final form for

the covariance of the pixel estimates,

=
‖p̂1‖‖p̂2‖

M2

M∑

j=1

M∑

k=1

E

[
(p̄1

j (X 1
j )W 1

j − 1) (p̄2
k

(X 2
k

)W 2
k
− 1)

]
. (11)

This final expression for the covariance shows that when the

input samples X i
j are importance sampled well at their original

pixels, i.e., W i
j ≈ 1/p̄i

j (X i
j ), then both factors in the expectation

tend to be small, yielding a small covariance as well.

We now consider the case without mutations, deriving covari-

ance when Z̃ 1 and Z̃ 2 are resampled directly from the samples X i
j

without mutations. The resampling weights are

w̃i
j =

1

M
p̂i (X i

j )W i
j , (12)

while the chosen sample Z̃ i has contribution weight

W̃ i =
1

p̂i (Z̃ i )

M∑

j=1

w̃i
j =

1

p̂i (Z̃ i )

M∑

j=1

1

M
p̂i (X i

j )W i
j . (13)

We again set p̂i = f i , which yields the pixel contribution

p̂i (Z̃ i )W̃ i =
1

M

M∑

j=1

p̂i (X i
j )W i

j . (14)

The pixel covariance then is

Cov
(
p̂1 (Z̃ 1)W̃ 1, p̂2 (Z̃ 2)W̃ 2

)

=
1

M2

M∑

j=1

M∑

k=1

Cov
(
p̂1 (X 1

j )W 1
j , p̂

2 (X 2
k

)W 2
k

)
, (15)

which we simplify to

=
‖p̂1‖‖p̂2‖

M2

M∑

j=1

M∑

k=1

Cov
(
p̄1 (X 1

j )W 1
j , p̄

2 (X 2
k

)W 2
k

)
. (16)

As before, we finally express covariance with expectations,

=
‖p̂1‖‖p̂2‖

M2

M∑

j=1

M∑

k=1

E

[
(p̄1 (X 1

j )W 1
j − 1) (p̄2 (X 2

k
)W 2

k
− 1)

]
. (17)

We immediately observe the critical difference between Equa-

tions (11) and (17): The inputs X i
j are in both cases distributed

approximately proportionally to p̄i
j , where, with good importance

sampling, we haveW i
j ≈ 1/p̄i

j (X i
j ); without mutations, the expres-

sions inside the expectations approximately equal

�
�
p̄1 (X 1

j )

p̄1
j (X 1

j )
− 1��

�
�
p̄2 (X 2

k
)

p̄2
j (X 2

k
)
− 1�� , (18)

which have no guarantees of being small if the target functions of

the pixels and their inputs are not similar. In fact, these ratios may

be arbitrarily large. However, by applying many mutations, these

expressions typically become much smaller, yielding

�
�
p̄1

j (X 1
j )

p̄1
j (X 1

j )
− 1��

�
�
p̄2

k
(X 2

k
)

p̄2
k

(X 2
k

)
− 1�� ≈ 0. (19)

This implies that mutations help bring covariance closer to zero

even when the target functions are different.

We have demonstrated that with well-distributed input samples,

a large number of mutations help decorrelate the inputs to reser-

voir sampling during spatial reuse, effectively making input paths

independent. The resulting independence of the mutated paths

suggests that covariance results merely from bad importance sam-

pling of the original pixels, not from incompatibility between close-

by pixels.

Pixels whose covariance is minimized should share as few input

samples as possible—the proof requires a complete separation. In

practice, we only apply a small number of mutations, which does

not completely decorrelate the input samples. We also randomize

the input pixels for each target pixel, leading to a small probabil-

ity of overlap between input samples. While we cannot realize the

ideal in practice, we aim for it as much as possible—every muta-

tion is a step closer to the limit, and heuristically we expect some

decrease in covariance with a smaller number of mutations.

Covariance does not go to zero simply by increasing the number

of mutations. We are still bounded by random overlaps between

input pixels and the quality of importance sampling as seen in

Equation (11).

In practice, proper MIS weights also protect the renderer from

the most terrible correlations and can be used to guarantee even-

tual convergence (see Lin et al. [2022]). A performance-optimized

implementation that greedily neglects MIS weights is, however,

much more prone to high covariance—this analysis predicts that

mutations are especially effective at removing correlation artifacts

in such use cases. It also predicts that covariance will be present

especially between close-by pixels with very different target func-

tions. ReSTIR implementations (such as ours) try to defend against
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such cases by using expensive MIS weights and/or careful neighbor

selection; this analysis, together with our empirical results, sug-

gests that mutations are a useful addition for further robustness.

2 WHY MUTATIONS DO NOT DECREASE VARIANCE

(MUCH)

Variance can be studied as a pixel’s covariance with itself,

Var(X ) = Cov(X ,X ). We do not prove that variance reduction can-

not happen when mutations are used—in some cases, it can. How-

ever, as we noted earlier, the two pixels’ input samples should be

different to minimize covariance. This is not true in the case of

variance: A pixel, tautologically, has the same input samples as it-

self, and the mechanism to reduce covariance does not apply to

variance—the corresponding inputs have 100% correlation. This is

in line with our empirical findings: Mutations have little impact on

variance.

REFERENCE
Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuskel, and

Chris Wyman. 2022. Generalized resampled importance sampling: Foundations
of ReSTIR. ACM Trans. Graph. 41, 75.

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.


