
Fast Volume Rendering with Spatiotemporal Reservoir Resampling
(Supplemental Document)

DAQI LIN, University of Utah, USA
CHRIS WYMAN, NVIDIA, USA
CEM YUKSEL, University of Utah, USA

ACM Reference Format:
Daqi Lin, Chris Wyman, and Cem Yuksel. 2021. Fast Volume Rendering
with Spatiotemporal Reservoir Resampling (Supplemental Document). ACM
Trans. Graph. 40, 6, Article 279 (December 2021), 4 pages. https://doi.org/10.
1145/3478513.3480499

1 RIS FOR PATH INTEGRALS
This subsection provides a more rigorous derivation of the RIS esti-
mator of the path integral proposed in Section 3.3 in the paper. We
assume the path tracing process being a randomwalk that generates
𝑛 paths 𝝀𝑖 (𝑖 ∈ {1, ..., 𝑛}) that differ by lengths (or emission/scatter
type in the volumetric case), responsible for𝑛 non-overlapping parts
(
∫
𝚲
𝑖 𝐹 (𝝀𝑖 ) 𝑑𝝀𝑖 ) of the path integral 𝐿 =

∫
𝚲
𝐹 (𝝀) 𝑑𝝀 (where 𝝀 can

be any length or type). In other words, 𝐿 =
∑∞
𝑖=1

∫
𝚲
𝑖 𝐹 (𝝀𝑖 ) 𝑑𝝀𝑖 . An

ordinary 1-sample Monte Carlo estimator simply sums the contribu-
tions from all sampled paths, i.e. ⟨𝐿⟩MC =

∑𝑛
𝑖=1

𝐹 (𝝀𝑖 )
𝑝 (𝝀𝑖 ) . Note that 𝑛

is a random variable and can pick any value from 0 to∞. We know
that ⟨𝐿⟩MC is an unbiased estimator of the path integral 𝐿. However,
we want to take advantage of RIS to avoid evaluating 𝐹 for all paths.
The traditional form of RIS assumes that all candidate samples are
taken from the same sampling domain to estimate the same inte-
gral. Now, we want to use RIS to estimate a sum of integrals using
candidate samples taken from the sampling domain of each inte-
gral, and only evaluate 𝐹 for the chosen sample 𝝀𝑟 . This requires a
slightly different definition of RIS (the "1/𝑀" term is removed from
the estimator). We now show that the RIS estimator

⟨𝐿⟩ris =
𝐹 (𝝀𝑟 )
𝑝 (𝝀𝑟 )

𝑛∑
𝑖=1

𝑝 (𝝀𝑖 )
𝑝 (𝝀𝑖 )

where 𝝀𝑟 is chosen from 𝝀1, ...,𝝀𝑛 according to the weight
𝑤 (𝝀𝑖 ) = 𝑝 (𝝀𝑖 )

𝑝 (𝝀𝑖 ) is also an unbiased estimator of the path integral, i.e.
E[⟨𝐿⟩ris] = E[⟨𝐿⟩MC]. The proof goes as follows,

E
[
⟨𝐿⟩ris

]
= E

[
E

[
𝐹 (𝝀𝑟 )
𝑝 (𝝀𝑟 ) |𝝀

1, ...,𝝀𝑛
]
·

𝑛∑
𝑖=1

𝑤 (𝝀𝑖 )
]

Authors’ addresses: Daqi Lin, University of Utah, USA; Chris Wyman, NVIDIA, USA;
Cem Yuksel, University of Utah, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART279 $15.00
https://doi.org/10.1145/3478513.3480499

= E


𝑛∑
𝑗=1

(
𝐹 (𝝀 𝑗 )
𝑝 (𝝀 𝑗 )

· 𝑤 (𝝀 𝑗 )∑𝑛
𝑖=1𝑤 (𝝀𝑖 )

)
·

𝑛∑
𝑖=1

𝑤 (𝝀𝑖 )


= E


𝑛∑
𝑗=1

𝐹 (𝝀 𝑗 )
𝑝 (𝝀 𝑗 )

· 𝑝 (𝝀
𝑗 )

𝑝 (𝝀 𝑗 )


= E


𝑛∑
𝑗=1

𝐹 (𝝀 𝑗 )
𝑝 (𝝀 𝑗 )

 = E[⟨𝐼 ⟩𝑀𝐶 ] . □

2 COMPARISON WITH VERTEX REUSE
Section 4.2 in the paper notes we can either resample paths by
reusing path vertices x𝑖 or by reusing directions 𝝎𝑖 . We chose to
reuse directions; while costs are somewhat higher for direction
reuse, it reduces noise fairly significantly. This is because paths act
a little like virtual point lights under reuse, which leads to more
singularities and fireflies. However, if these could be reduced, it
may make sense to switch back to vertex reuse for the improved
performance. See Figure 1 to compare visually between vertex and
directional reuse.

3 DENOISED RESULT
In Figure 2, we compare denoising applied to both our baseline and
our resampling technique; both using the new OptiX 7.3 temporal
denoising mode. While OptiX produces amazingly denoised results
in both cases, the better sampling provided by our technique pre-
serves much higher frequency details in the animation, while the
baseline gives a smoother, more washed out look. Part of this is
also due to the improved motion vectors we provide with our novel
temporal reprojection plus velocity resampling.
Please see the supplementary video to compare the denoised

results under animation.

4 PSEUDOCODE
We provide the pseudocode of our fast volume rendering with spa-
tiotemporal reservoir resampling (Volumetric ReSTIR) in this supple-
mental document. Algorithm 1 gives an outline of the full algorithm,
ignoring surface bounces for simplicity. Algorithm 2 shows the
reservoir class we used for storing and streaming the samples. Algo-
rithm 3, Algorithm 5, and Algorithm 6 shows four individual stages
of our algorithm: initial sampling, temporal reuse, spatial reuse, and
final shading. We provide the detail of how we resample the target
function 𝑝 in Algorithm 4.

ACM Trans. Graph., Vol. 40, No. 6, Article 279. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480499
https://doi.org/10.1145/3478513.3480499
https://doi.org/10.1145/3478513.3480499


279:2 • Lin, Wyman, and Yuksel

(a) Vertex Reuse
Time: 83.8 ms
MSE: 0.0062

(b) Direction Reuse
Time: 95.9 ms
MSE: 0.0054

(c) Reference

Fig. 1. Compare vertex and direction reuse. (We reuse directions.) Here we show 7-bounce multiple scattering in the Bunny Cloud scene. While
vertex reuse provides a slight performance win, it introduces additional sampling variance due to large weights of potentially irrelevant paths
during spatial reuse.

Baseline (1 bounce) with denoising Ours (1 bounce) with denoising

Baseline (7 bounces) with denoising Ours (7 bounces) with denoising

Fig. 2. The OptiX 7.3 temporal denoiser applied to both our baseline and our method, using (top) single and (bottom) 7-bounce multiple scattering.

ACM Trans. Graph., Vol. 40, No. 6, Article 279. Publication date: December 2021.



Fast Volume Rendering with Spatiotemporal Reservoir Resampling
(Supplemental Document) • 279:3

Algorithm 1: Full algorithm.
1 function VolumetricReSTIR()
2 allocate an image size array of reservoirs
3 foreach 𝑞 ∈ Image do
4 reservoirs[𝑞]← InitialSampling(𝑞)
5 end
6 foreach 𝑞 ∈ Image do
7 reservoirs[𝑞]← TemporalReuse(𝑞)
8 end
9 foreach 𝑞 ∈ Image do
10 reservoirs[𝑞]← SpatialReuse(𝑞)
11 end
12 prevFrameReservoirs← reservoirs
13 foreach 𝑞 ∈ Image do
14 pixel color← FinalShading(𝑞)
15 end

Algorithm 2: Pseudocode of the Reservoir class.
1 class Reservoir
2 𝝀 ← null

// the content of the path sample can be seen in line 3, Algorithm 4.
3 𝑤𝑠𝑢𝑚 ← 0
4 𝑀 ← 0
5 𝑝 ← 0
6 function update(𝑝𝑖 , 𝑝𝑖 ,𝝀𝑖)
7 if null sample then
8 𝑀 ← 𝑀 + 1
9 else
10 𝑤𝑖 ← 𝑝𝑖/𝑝𝑖
11 𝑤𝑠𝑢𝑚 ← 𝑤𝑠𝑢𝑚 +𝑤𝑖

12 𝑀 ← 𝑀 + 1
// Generate a random number 𝜉 .

13 if 𝜉 < 𝑤𝑖/𝑤𝑠𝑢𝑚 then
14 𝝀 ← 𝝀𝑖
15 𝑝 ← 𝑝𝑖

16 function combineReservoir(𝑝𝑖 , 𝑟𝑖 ,𝑚)
17 𝑤𝑖 ← 𝑝𝑖/(𝑟𝑖 .𝑝) · 𝑟𝑖 .𝑤𝑠𝑢𝑚 ·𝑚
18 𝑤𝑠𝑢𝑚 ← 𝑤𝑠𝑢𝑚 +𝑤𝑖

19 𝑀 ← 𝑀 + 𝑟𝑖 .𝑀
20 if 𝜉 < 𝑤𝑖/𝑤𝑠𝑢𝑚 then
21 𝝀 ← 𝝀𝑖
22 𝑝 ← 𝑝𝑖

Algorithm 3: Pseudocode of the initial sampling pass.
1 function InitialSampling(𝑞)
2 Reservoir 𝑟
3 [x0,𝝎0] ← ray origin and direction from pixel 𝑞

//𝑀 is the number of random walks
4 for𝑚← 1 to M do
5 Reservoir 𝑟𝑚
6 𝑝 ← 1
7 𝑝 ← 1
8 𝝀0 ← Path with only camera vertex
9 for 𝑖 ← 1 to 𝐾 do
10 [𝑧𝑖 , 𝜎∗𝑡 (x𝑖 ),𝑇 ∗] ← RegularTracking(x𝑖−1,𝝎𝑖−1)
11 𝝀𝑖 ← AddPathVertex(𝝀𝑖−1, x𝑖 )
12 if 𝑧𝑖 == 𝑧𝑠 then
13 if 𝑖 == 1 then
14 𝑝 ← 𝑝 ·𝑇 ∗
15 𝑝 ← 𝑝 · 𝐿𝑠𝑇 ∗
16 𝑟𝑚 .update(𝑝, 𝑝,𝝀𝑖 )
17 else
18 𝑟𝑚 .update(null sample)
19 break
20 if 𝜎𝑡 (x𝑖 ) == 0 then
21 𝑟𝑚 .update(null sample)
22 break
23 𝑝 ← 𝑝 · 𝜎∗𝑡 (x𝑖 )𝑇 ∗
24 𝑝 ← 𝑝 ·𝑇 ∗
25 if volume contains emission then
26 𝑝 ′ ← 𝑝 · 𝜎𝑎 (x𝑖 )𝐿𝑚𝑒 (x𝑖 )

// the superscript 𝑒 marks an emission path
27 𝑟𝑚 .update(𝑝, 𝑝 ′,𝝀𝑒

𝑖
)

// Scattering event. (𝑝NEE is the pdf of the light sample)
28 [𝐿𝑠 , x′𝑖+1,𝝎

′
𝑖
, 𝑝NEE] ← SampleLight (x𝑖 )

// ray marching with a larger step size
29 𝑇 ← EstimateVolumetricShadow(x𝑖 , x′𝑖+1)
30 𝑝 ← 𝑝 · 𝜎𝑠 (x𝑖 )𝜌 (x𝑖 ,−𝝎𝑘−1,𝝎

′
𝑖
)𝐿𝑠𝑇

31 𝑝 ← 𝑝 · 𝑝NEE
32 𝑟𝑚 .update(𝑝, 𝑝,AddPathVertex(𝝀𝑖 , x′𝑖+1))

// Prepare for the next bounce.
33 𝝎𝑖 ← SamplePhaseFunction(x𝑖 )
34 𝑝 ← 𝑝 · 𝜎𝑠 (x𝑖 )𝜌 (x𝑖 ,−𝝎𝑖−1,𝝎𝑖 )
35 𝑝 ← 𝑝 · 𝜌 (x𝑖 ,−𝝎𝑖−1,𝝎𝑖 )
36 end

// Set𝑀 to 1 since we are using the path integral RIS.
37 𝑟𝑚 .𝑀 ← 1
38 𝑟 .combineReservoir(𝑝 (𝑟𝑚 .𝝀), 𝑟𝑚, 1)
39 end
40 return 𝑟

ACM Trans. Graph., Vol. 40, No. 6, Article 279. Publication date: December 2021.



279:4 • Lin, Wyman, and Yuksel

Algorithm 4: Resample target function.
1 function ResampleTargetFunction(𝝀, 𝑞)
2 [x0,𝝎0] ← ray origin and direction from pixel 𝑞

// 𝑘′ is the number of scattering events (plus 1 for emissive paths 1). x𝑘′+1
and 𝝎𝑘′ are the position and direction of the light sample.

3 [𝑘 ′, 𝑖𝑠𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑧1,𝝎1, 𝑧2,𝝎2, ..., 𝑧𝑘′,𝝎𝑘′, x𝑘′+1] ← 𝝀

4 𝑝 ← 1
5 for 𝑖 ← 1 to 𝑘 ′ do
6 x𝑖 = x𝑖−1 + 𝑧𝑖𝝎𝑖−1 // Direction reuse

7 𝑇 ← RayMarching(x𝑖−1, x𝑖 )
8 if 𝑧𝑖 == 𝑧𝑠 then
9 if 𝑖 == 1 then
10 𝑝 ← 𝐿𝑠𝑇

11 return 𝑝
12 else
13 return 0
14 if 𝑖𝑠𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 then
15 return 𝑝 · 𝜎𝑎 (x𝑖 )𝑇𝐿𝑚𝑒 (x𝑖 )
16 𝑝 ← 𝑝 · 𝜎𝑠 (x𝑖 )𝑇
17 𝑝 ← 𝑝 · 𝜌 (x𝑖 ,−𝝎𝑖−1,𝝎𝑖 )
18 end

// Transmittance of the NEE segment
19 𝑇 ← RayMarching(x𝑘′, x𝑘′+1)
20 𝑝 ← 𝑝 ·𝑇
21 return 𝑝

1Directly visible surface emission also counts as an emission path, with the corre-
sponding terms ("if emission path") in Equation 15 and 25 in the paper changed to
𝐿𝑠 (x1 → x0) .

Algorithm 5: Pseudocode of spatial/temporal reuse.
1 function TemporalReuse(𝑞)
2 𝑞′ ← TemporalReprojection(𝑞, reservoirs[𝑞])
3 return CombineReservoirs(reservoirs[𝑞],

prevFrameReservoirs[𝑞′], 𝑞, 𝑞′})
4 function SpatialReuse(𝑞)
5 𝑆 ← pickSpatialNeighbors(𝑞)
6 return CombineReservoirs(reservoirs[𝑞], {reservoir[𝑞′] |

𝑞′ ∈ 𝑆 }, 𝑞, {𝑞′ ∈ 𝑆})
7 function CombineReservoirs(𝑟0, 𝑟1, ..., 𝑟𝑁 , 𝑞0, 𝑞1, ..., 𝑞𝑁 )
8 Reservoir 𝑠
9 foreach 𝑟𝑖 ∈ {𝑟0, ..., 𝑟𝑁 } do
10 𝑝sum ← 0
11 𝑘 ← 0

// Compute MIS weight
12 foreach 𝑞𝑠 ∈ {𝑞0, ..., 𝑞𝑁 } do
13 𝑝𝑞𝑠 (𝑟𝑖 .𝝀) ← ResampleTargetFunction(𝑟𝑖 .𝝀, 𝑞𝑠 )
14 𝑝sum ← 𝑝sum + 𝑝𝑞𝑠 (𝑟𝑖 .𝝀) · 𝑟𝑖 .𝑀
15 𝑘 ← 𝑘 + 𝑟𝑖 .𝑀
16 end

17 𝑚 ← 𝑝𝑞𝑖 (𝑟𝑖 .𝝀)
𝑝sum/𝑘 // MIS weight

18 𝑝𝑞 (𝑟𝑖 .𝝀) ← ResampleTargetFunction(𝑟𝑖 .𝝀, 𝑞0)
19 𝑠 .combineReservoir(𝑝𝑞 (𝑟𝑖 .𝝀), 𝑟𝑖 ,𝑚)
20 end
21 return 𝑠

Algorithm 6: Final shading.
1 function FinalShading(𝑞)
2 𝑟 ← reservoirs[𝑞]

// Analytical transmittance values are computed.
3 𝑓 (𝑟 .𝝀) ← compute integrand
4 return 𝑓 (𝑟 .𝝀)

𝑝 (𝑟 .𝝀)
𝑟 .𝑤𝑠𝑢𝑚

𝑟 .𝑀

ACM Trans. Graph., Vol. 40, No. 6, Article 279. Publication date: December 2021.


	1 RIS for Path Integrals
	2 Comparison with Vertex Reuse
	3 Denoised Result
	4 Pseudocode

